Skip to main content
Log in

Spatial characteristics of the truncated circular Airyprime beam

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The circular Airyprime (CiAiP) beam is introduced in this paper. The spatial proprieties are well discussed and compared to the first order radial Laguerre–Gaussian beam LG10. The width, the divergence and the beam propagation factor are calculated based on the second order moments method, the latter is equal to M2 = 3.08. The free propagating CiAiP beam exhibits an unexpected non-diffracting character, it doesn’t spread through propagation. The on-axis intensity of the focused circular Airyprime beam is also explored, it exhibits a dual focus corresponding to two on-axis intensity maxima, it could be modified under diffraction using a hard circular aperture. The latter presents a cheap beam shaper, it is shown that a hard aperture could transform an input circular Airyprime beam into perfect ringed beam, a perfect Gaussian beam and a top hat beam. By combining the axial and the transversal behavior of a truncated circular Airyprime beam for a particular aperture diameter a perfect cylindrical optical bottle beam is obtained. The present work could be of big interest in the field of structured light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramochkin, E., Razueva, E.: Product of three Airy beams. Opt. Lett. 36, 3732–3736 (2011)

    Article  ADS  Google Scholar 

  • Ahluwalia, B., Yuan, V., Tao, S.: Generation of self-imaged optical bottle beams. Opt. Commun. 238, 177–184 (2004)

    Article  ADS  Google Scholar 

  • Arlt, J., Padgett, M.: Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett. 25, 191–193 (2000)

    Article  ADS  Google Scholar 

  • Bandres, M.A., Gutierrez, J.C.: Airy–Gauss beams and their transformation by paraxial optical systems. Opt. Express 15, 16719–16728 (2007)

    Article  ADS  Google Scholar 

  • Carter, W.H.: Spot size and divergence for Hermite Gaussian beams of any order. Appl. Opt. 19, 1027–1029 (1980)

    Article  ADS  Google Scholar 

  • Champagne, Y.: Second-moment approach to the time-averaged spatial characterization of multiple-transverse-mode laser beams. J. Opt. Soc. Am. A 12, 1707–1717 (1995)

    Article  ADS  Google Scholar 

  • Collins Jr., S.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. A 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  • Courvoisier, F., Stoian, R., Couairon, A.: Ultrafast laser micro-and nano-processing with nondiffractinf and curved beams. Opt. Laser Technol. 80, 125–137 (2016)

    Article  ADS  Google Scholar 

  • Deng, D.: Generalized M 2 factor of hollow Gaussian beams through a hard-edge circular aperture. Phys. Lett. A 341, 352–356 (2005)

    Article  ADS  Google Scholar 

  • Deng, H., Yuan, L.: Two-dimendionnel Airy-like beam generation by coupling waveguides. J. Opt. Soc. Am. A 30, 1404–1407 (2013)

    Article  ADS  Google Scholar 

  • Deng, H., Yuan, Y., Yuan, L.: Two-dimensional Airy-like beam generation by coupling waveguides. Opt. Lett. 41, 824–828 (2016)

    Article  ADS  Google Scholar 

  • Efremidis, N.K., Christodoulides, D.N.: Abruptly autofocusing waves. Opt. Lett. 35, 4045–4047 (2010)

    Article  ADS  Google Scholar 

  • Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A., Arie, A.: Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3, 395–398 (2009)

    Article  ADS  Google Scholar 

  • Gutierrez-Vega, J.C., Iturbe-Castillo, M.D., Chavez-Cerda, S.: Alternative formulation for invariant optical fields: Mathieu beam. Opt. Lett. 25, 1493–1495 (2000)

    Article  ADS  Google Scholar 

  • Hasnaoui, A., Bencheikh, A., Fromager, M., Cagniot, E., Aït Ameur, K.: Creation of a sharper focus using a rectified TEMp0 beam. Opt. Commun. 284, 1331–1334 (2011)

    Article  ADS  Google Scholar 

  • Hasnaoui, A., Haddadi, S., Fromager, M., Louhibi, D., Harfouche, A., Cagniot, E., Aït, Ameur K.: Transformation of LG10 beam into an optical bottle beam. Laser Phys. 25, 085004–085013 (2015)

    Article  ADS  Google Scholar 

  • Jiang, Y., Zhu, X., Yu, W., Shao, H., Zheng, W., Lu, X.: Propagation characteristics of the modified circular Airy beam. Opt. Express 23, 22847–22853 (2015)

    Article  Google Scholar 

  • Li, N., Jiang, Y., Huang, K., Lu, X.: Abruptly autofocusing property of blocked circular Airy beams. OPt. Express 22, 29834–29841 (2014)

    Google Scholar 

  • Martinez-Herrero, R., Mejéas, P.M.: Second-order spatial characterization of hard-edge diffracted beams. Opt. Lett. 18, 1669–1671 (1993)

    Article  ADS  Google Scholar 

  • Mathis, A., Courvoisier, F., Froehly, L., Furfaro, L., Jacquot, M., Lacourt, P., Dudly, J.: Micromachining along a curve: femto-second laser micromachining of a curved profiles in diamond and silicon using accelerating beams. Appl. Phys. Lett. 101, 071110–071112 (2012)

    Article  ADS  Google Scholar 

  • McGloin, D., Spalding, G., Melville, H., Sibbett, W., Dholakia, K.: 3D array of bottle beams. Opt. Commun. 225, 191–193 (2003)

    Article  Google Scholar 

  • Mei, Z., Zhao, D.: the generalized beam propagation factor truncated standard and Elegant–Laguerre–Gaussian beams. J. Opt. A: Pure Appl. Opt. 6, 1005–1011 (2004)

    Article  ADS  Google Scholar 

  • Mei, Z., Zhao, D.: Approximate method for the generalized M-factor of rotationally symmetric hard-edged diffracted flattened Gaussian beams. Appl. Opt. 44, 1381–1386 (2005)

    Article  ADS  Google Scholar 

  • Mei, Z., Zhao, D.: Generalized beam propagation factor of hard-edged circular apertured diffracted Bessel–Gaussian beams. Opt. Laser Technol. 39, 1389–1394 (2007)

    Article  ADS  Google Scholar 

  • Mihoubi, K., Bencheikh, A., Manallah, A.: The beam propagation factor M2 of truncated Standard and Elegant–Hermite–Gaussian beams. Opt. Laser Technol. 99, 191–196 (2018)

    Article  ADS  Google Scholar 

  • Phillips, R.L., Andrews, L.C.: Spot size and divergence for Laguerre Gaussian beams of any order. Appl. Opt. 19, 643–644 (1983)

    Article  ADS  Google Scholar 

  • Saghafi, S., Sheppard, C.J.R.: The beam propagation factor for higher order Gaussian beams. Opt. Commun. 153, 207–210 (2008)

    Article  ADS  Google Scholar 

  • Siegman, A.E.: New developments in laser resonators. In: Proceeding of SPIE, pp. 12242–12256 (1990)

  • Siviloglou, G.A., Christodoulides, D.N.: Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007)

    Article  ADS  Google Scholar 

  • Siviloglou, G.A., Brokly, J., Dogariu, A., Christodoulides, D.N.: Observation of accelerating Airy beam. Phys. Rev. Lett. 99, 213901–213904 (2007)

    Article  ADS  Google Scholar 

  • Vallée, O., Manuel, S.: Airy Functions and Applications to Physics. Imperial College Press, London (2010)

    Book  Google Scholar 

  • Wang, X., Lu, B.: The beam width of Bessel-modulated Gaussian beams. J. Mod. Opt. 50, 2107–2115 (2003)

    Article  ADS  Google Scholar 

  • Wen, W., Song, K., Dong, Y., Yao, M.: Finite energy Airy–Hermite–Gaussian beam and its paraxial propagation. Opt. Laser Technol. 48, 28–34 (2013)

    Article  ADS  Google Scholar 

  • Xu, Y., Zhou, G., Zhang, L., Ru, G.: Two kinds of Airy-related beams. Laser Phys. 25, 085005–085018 (2015)

    Article  ADS  Google Scholar 

  • Yan, S., Yao, B., Lei, M., Dan, D., Yang, Y., Gao, P.: Virtual source for an Airy beam. Opt. Lett. 37, 4774–4776 (2012)

    Article  ADS  Google Scholar 

  • Zhang, J., Hue, J.: Dual abruptly focus of modulated circular airy beams. IEEE Photonics J. 9, 6500510–6500520 (2016)

    Google Scholar 

  • Zheng, Z., Zhang, B.F., Chen, H., Ding, J., Wang, H.T.: Optical trapping with focused Airy beams. Appl. Opt. 50, 43–49 (2011)

    Article  ADS  Google Scholar 

  • Zhong, W.P., Belic, M., Zhang, Y.: Three-dimensional localized Airy–Laguerre–Gaussian wave packets in free space. Opt. Express 23, 23867–23876 (2015)

    Article  ADS  Google Scholar 

  • Zhou, G.: Generalized beam propagation factors of truncated partially coherent cosine-Gaussian beam and cosh-Gaussian beams. Opt. Laser Technol. 42, 489–496 (2010)

    Article  ADS  Google Scholar 

  • Zhou, G.: Generalized beam propagation factors of truncated partially coherent cosine-Gaussian beam and cosh-Gaussian beams. Opt. Laser Technol. 44, 1318–1323 (2012)

    Article  ADS  Google Scholar 

  • Zhou, G.: Beam propagation factors and kurtosis parameters of a Lorentz–Gauss vortex beam. J. Opt. Soc. Am. A 31, 1239–1246 (2014)

    Article  ADS  Google Scholar 

  • Zhou, G., Chen, R., Ru, G.: Airyprime beams and their propagation characteristics. Laser Phys. Lett. 12, 025003–025012 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhalim Bencheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencheikh, A. Spatial characteristics of the truncated circular Airyprime beam. Opt Quant Electron 51, 2 (2019). https://doi.org/10.1007/s11082-018-1714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1714-7

Keywords

Navigation