Skip to main content
Log in

Low-temperature-processed ZnO thin films as electron transporting layer to achieve stable perovskite solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Morphology and surface property of ZnO thin films as electron transporting layer in perovskite solar cells are crucial for obtaining high-efficient and stable perovskite solar cells. In this work, two different preparation methods of ZnO thin films were carried out and the photovoltaic performances of the subsequent perovskite solar cells were investigated. ZnO thin film prepared by sol–gel method was homogenous but provided high series resistance in solar cells, leading to low short circuit current density. Lower series resistance of solar cell was obtained from homogeneous ZnO thin film from spin-coating of colloidal ZnO nanoparticles (synthesized by hydrolysis–condensation) in a mixture of 1-butanol, chloroform and methanol. The perovskite solar cells using this film achieved the highest power conversion efficiency (PCE) of 4.79% when poly(3-hexylthiophene) was used as a hole transporting layer. In addition, the stability of perovskite solar cells was also examined by measuring the photovoltaic characteristic for six consecutive weeks with the interval of 2 weeks. It was found that using double layers of the sol–gel ZnO and ZnO nanoparticles provided better stability with no degradation of PCE in 10 weeks. Therefore, this work provides a simple method for preparing homogeneous ZnO thin films in order to achieve stable perovskite solar cells, also for controlling their surface properties which help better understand the characteristics of perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baker, J.A., Mouhamad, Y., Hooper, K.E.A., Burkitt, D., Geoghegan, M., Watson, T.M.: From spin coating to roll-to-roll: investigating the challenge of upscaling lead halide perovskite solar cells. IET Renew. Power Gener. 11, 546–549 (2017)

    Article  Google Scholar 

  • Bishop, J.E., Mohamad, D.K., Wong-Stringer, M., Smith, A., Lidzey, D.G.: Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Sci. Rep. 7, 1–11 (2017)

    Article  Google Scholar 

  • Hassanpour, A., Bogdan, N., Capobianco, J.A., Bianucci, P.: Hydrothermal selective growth of low aspect ratio isolated ZnO nanorods. Mater. Des. 119, 464–469 (2017)

    Article  Google Scholar 

  • Idigoras, J., Todinova, A., Sanchez-Valencia, J.R., Barranco, A., Borras, A., Anta, J.A.: The interaction between hybrid organic–inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study. Phys. Chem. Chem. Phys. 18, 13583–13590 (2016)

    Article  Google Scholar 

  • Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., Park, N.-G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. (2012). https://doi.org/10.1038/srep00591

    Article  Google Scholar 

  • Mahmud, M.A., Elumalai, N.K., Upama, M.B., Wang, D., Puthen-Veettil, B., Haque, F., Wright, M., Xu, C., Pivrikas, A., Uddin, A.: Controlled Ostwald ripening mediated grain growth for smooth perovskite morphology and enhanced device performance. Sol. Energy Mater. Sol. Cells 167, 87–101 (2017)

    Article  Google Scholar 

  • Mallick, P.: Effect of solvent on the microstructure and optical band gap of ZnO nanoparticles. Nanoelectron. Mater. Dev. 55, 187–192 (2017)

    Google Scholar 

  • Meijer, E.J., Detcheverry, C., Baesjou, P.J., van Veenendaal, E., de Leeuw, D.M., Klapwijk, T.M.: Dopant density determination in disordered organic field-effect transistors. J. Appl. Phys. 93, 4831–4853 (2003)

    Article  ADS  Google Scholar 

  • Ruankham, P., Macaraig, L., Sagawa, T., Nakazumi, H., Yoshikawa, S.: Surface modification of ZnO nanorods with small organic molecular dyes for polymer-inorganic hybrid solar cells. J. Phys. Chem. C 115, 23809–23816 (2011)

    Article  Google Scholar 

  • Ruankham, P., Yoshikawa, S., Sagawa, T.: Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells. Phys. Chem. Chem. Phys. 15, 9516–9522 (2013)

    Article  Google Scholar 

  • Ruankham, P., Wongratanaphisan, D., Gardchareon, A., Phadungdhitidhada, S., Choopun, S., Sagawa, T.: Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Appl. Surf. Sci. 410, 393–400 (2017)

    Article  ADS  Google Scholar 

  • Schafferhans, J., Baumann, A., Deibel, C., Dyakonov, V.: Trap distribution and the impact of oxygen-induced traps on the charge transport in poly(3-hexylthiophene). Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2978237

    Article  Google Scholar 

  • Shen, K., Sun, H.L., Ji, G., Yang, Y., Jiang, Z., Song, F.: Fabrication and characterization of organic–inorganic hybrid perovskite devices with external doping. Nanoelectron. Mater. Dev. Chapter 6, 95–116 (2016)

    Google Scholar 

  • Shibayama, N., Kanda, H., Yusa, S., Fukumoto, S., Baranwal, A.K., Segawa, H., Miyasaka, T., Ito, S.: All-inorganic inverse perovskite solar cells using zinc oxide nanocolloids on spin coated perovskite layer. Nano Converg. 4(18), 1–5 (2017)

    Google Scholar 

  • Son, D.Y., Bae, K.H., Kim, H.S., Park, N.G.: Effects of seed layer on growth of ZnO nanorod and performance of perovskite solar cell. J. Phys. Chem. C 119, 10321–10328 (2015)

    Article  Google Scholar 

  • Wang, Z.L.: Nanostructures of zinc oxide. Mater. Today 7(6), 26–33 (2004)

    Article  MathSciNet  Google Scholar 

  • Wang, J., Lee, Y.J., Hsu, J.W.P.: One-step synthesis of ZnO nanocrystals in n-butanol with bandgap control: applications in hybrid and organic photovoltaic devices. J. Phys. Chem. C 118, 18417–18423 (2014)

    Article  Google Scholar 

  • Yang, R.D., Tripathy, S., Li, Y., Sue, H.J.: Photoluminescence and micro-Raman scattering in ZnO nanoparticles: the influence of acetate adsorption. Chem. Phys. Lett. 411, 150–154 (2005)

    Article  ADS  Google Scholar 

  • Yang, Z., Zhang, S., Li, L., Chen, W.: Research progress on large-area perovskite thin films and solar modules. J. Materiomics 3, 231–244 (2017)

    Article  Google Scholar 

  • Ye, M., Liu, X., Iocozzia, J., Liu, X., Lin, Z.: Nanostructured materials for high efficiency perovskite solar cells. In: Li, Q. (ed.) Nanomaterials for Sustainable Energy, NanoScience and Technology, pp. 1–39. Springer, Cham (2016)

    Google Scholar 

  • Yin, T., Chen, N., Zhang, Y., Cai, X., Wang, Y.: Structure, morphologies and dye removal efficiency of ZnO nanorods grown on polycrystalline Zn substrate. Superlattices Microstruct. 74, 279–293 (2014)

    Article  ADS  Google Scholar 

  • Zardetto, V., Williams, B.L., Perrotta, A., Di Giacomo, F., Verheijen, M.A., Andriessen, R., Kessels, W.M.M., Creatore, M.: Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustain. Energy Fuels 1, 30–55 (2017)

    Article  Google Scholar 

  • Zhang, Y., Grancini, G., Feng, Y., Asiri, A.M., Nazeeruddin, M.K.: Optimization of stable quasi-cubic FAxMA1–xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett. 2, 802–806 (2017)

    Article  Google Scholar 

  • Zhao, Y.H., Zhang, K.C., Wang, Z.W., Huang, P., Zhu, K., Li, Z.D., Li, D.H., Yuan, L.G., Zhou, Y., Song, B.: Comprehensive study of sol − gel versus hydrolysis–condensation methods to prepare ZnO films: electron transport layers in perovskite solar cells. ACS Appl. Mater. Interfaces. 9(31), 26234–26241 (2017)

    Article  Google Scholar 

  • Zheng, H., Dai, J., Duan, J., Chen, F., Zhu, G., Wang, F., Xu, C.: Temperature-dependent photoluminescence properties of mixed-cation methylammonium–formamidium lead iodide [HC(NH2)2] × [CH3NH3 +]1−xPbI3 perovskite nanostructures. J. Mater. Chem. C 5, 12057–12061 (2017)

    Article  Google Scholar 

  • Zhou, P., Bu, T.L., Shi, S.W., Li, L.F., Zhang, Y.L., Ku, Z.L., Peng, Y., Zhong, J., Cheng, Y.B., Huang, F.Z.: Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer. J. Mater. Chem. C 6, 5733–5737 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Chiang Mai University and the Development and Promotion of Science and Technology Talents Project (DPST) (Research Fund for DPST Graduate with First Placement No. 25/2557). The authors thank Dr. Chawalit Bhoomanee for help in the device preparation and measurement. The authors would like to acknowledge the scholarship from School of Renewable Energy, Maejo University, and the Energy Policy and Planning Office, Ministry of Energy, Thailand.

Funding

This research was financially supported by Chiang Mai University and the Development and Promotion of Science and Technology Talents Project (DPST) (Research Fund for DPST Graduate with First Placement No. 25/2557). This work was also supported by National Research Council of Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pipat Ruankham.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horachit, C., Intaniwet, A., Choopun, S. et al. Low-temperature-processed ZnO thin films as electron transporting layer to achieve stable perovskite solar cells. Opt Quant Electron 50, 379 (2018). https://doi.org/10.1007/s11082-018-1652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1652-4

Keywords

Navigation