Skip to main content
Log in

Realization of wide-angle and wideband absorber using metallic and graphene-based metasurface for mid-infrared and low THz frequency

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This article presents a study on mid-infrared and low-THz absorbers based on metallic and graphene metasurface. The absorber is constructed of a periodic array of patterned elements in patch form placed on a quarter-wavelength dielectric film terminated by a metallic reflector. A simple analytical circuit model equivalent to patch array is used for employing the matching impedance approach to realize the wideband absorber. This absorber is polarization independent for normal incident waves owing to its symmetric structure. Simulation and analytical circuit model results show that the graphene and metallic-based absorbers proposed in this paper can operate with an absorption value above 90% in a normalized bandwidth of 100% in the low terahertz (THz) and the mid-infrared regime, respectively. The proposed absorber is wide-angle for both TM and TE polarizations and polarization-insensitive for small incident angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arik, K., AbdollahRamezani, S., Khavasi, A.: Polarization insensitive and broadband terahertz absorber using graphene disks. Plasmonics 12, 393–398 (2017)

    Article  Google Scholar 

  • Arik, K., Abdollahramezani, S., Farajollahi, S., Khavasi, A., Rejaei, B.: Design of mid-infrared ultra-wideband metallic absorber based on circuit theory. Opt. Commun. 381, 309–313 (2016)

    Article  ADS  Google Scholar 

  • Bai, Y., Zhao, L., Ju, D., Jiang, Y., Liu, L.: Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Opt. Express 23, 8670–8680 (2015)

    Article  ADS  Google Scholar 

  • Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012)

    Article  Google Scholar 

  • Barzegar-Parizi, S., Rejaei, B., Khavasi, A.: Analytical circuit model for periodic arrays of graphene disks. IEEE J. Quantum Electron. 51, 7000507 (2015)

    Article  Google Scholar 

  • Barzegar-Parizi, S., Tavakol, M.R., Khavasi, A.: Deriving surface impedance for two-dimensional arrays of graphene patches using a variational method. IEEE J. Quantum Electron. 53, 7000106 (2017)

    Article  Google Scholar 

  • Bolotin, K.I., Sikes, K.J., Jianga, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  ADS  Google Scholar 

  • Chen, W., Thoreson, M.D., Ishii, S., Kildishev, A.V., Shalaev, V.M.: Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt. Express 18, 5124–5134 (2010)

    Article  ADS  Google Scholar 

  • Chen, H.-H., Su, Y.-C., Huang, W.-L., Kuo, C.-Y., Tian, W.-C., Chen, M.-J., Lee, S.-C.: A plasmonic infrared photodetector with narrow bandwidth absorption. Appl. Phys. Lett. 105, 023109 (2014)

    Article  ADS  Google Scholar 

  • Cheng, C.-W., Abbas, M.N., Chiu, C.-W., Lai, K.-T., Shih, M.-H., Chang, Y.-C.: Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt. Express 20, 10376–10381 (2012)

    Article  ADS  Google Scholar 

  • Correas-Serrano, D., Gomez-Diaz, J.S., Perruisseau-Carrier, J.: Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans. Nanotechnol. 13, 1145–1153 (2014)

    Article  ADS  Google Scholar 

  • Cui, Y., Xu, J., Fung, K.H., Jin, Y., Kumar, A., He, S., Fang, N.X.: A thin film broadband absorber based on multi-sized nanoantennas. Appl. Phys. Lett. 99, 253101 (2011)

    Article  ADS  Google Scholar 

  • Cui, Y., He, Y., Jin, Y., Ding, F., Yang, L., Ye, Y., Zhong, S., Lin, Y., He, S.: Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 8, 495–520 (2014)

    Article  ADS  Google Scholar 

  • D’Aguanno, G., Mattiucci, N., Alù, A., Argyropoulos, C., Foreman, J.V., Bloemer, M.J.: Thermal emission from a metamaterial wire medium slab. Opt. Express 20, 9784–9789 (2012)

    Article  ADS  Google Scholar 

  • Dean, C., Young, A., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)

    Article  ADS  Google Scholar 

  • Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  • Greffet, J.-J., Carminati, R., Joulain, K., Mulet, J.-P., Mainguy, S., Chen, Y.: Coherent emission of light by thermal sources. Nature 416, 61–64 (2002)

    Article  ADS  Google Scholar 

  • http://e-science.ru/sites/default/files/upload_forums_files/8u/HFSSintro.pdf (2009)

  • Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)

    Article  ADS  Google Scholar 

  • Kakenov, N., Balci, O., Takan, T., Ozkan, V., Altan, H., Kocabas, C.: Observation of gate-tunable coherent perfect absorption of terahertz radation in graphene. ACS Photonics 3, 1531–1535 (2016)

    Article  Google Scholar 

  • Kawamura, M., Kiba, T., Abe, Y., Kim, K.H., Murotani, H.: Metal nanolayer deposited highly stable Ag thin films and their optical properties. Journal of Physics: Conference Series 987, 012002 (2018)

    Google Scholar 

  • Khavasi, A.: Design of ultra-broadband graphene absorber using circuit theory. J. Opt. Soc. Am. B 32, 1941–1946 (2015)

    Article  ADS  Google Scholar 

  • Khavasi, A., Rejaei, B.: Analytical modeling of graphene ribbons as optical circuit elements. IEEE J. Quantum Electron. 50, 397–403 (2014)

    Article  ADS  Google Scholar 

  • Kim, S., Jang, M.S., Brar, V.W., Mauser, K.W., Atwater, H.A.: Electronically tunable perfect absorption in graphene. Nano Lett. 18, 971–979 (2018)

    Article  ADS  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010)

    Article  ADS  Google Scholar 

  • Maier, S.A., Atwater, H.A.: Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005)

    Article  ADS  Google Scholar 

  • Mann, S.A., Garnett, E.C.: Resonant nanophotonic spectrum splitting for ultrathin multi junction solar cells. ACS Photonics 2, 816–821 (2015)

    Article  Google Scholar 

  • Ni, X., Wong, Z.J., Merjen, M., Zhang, X.: An ultra-thin invisibility skin cloak for visible light. Science 349, 1310–1314 (2015)

    Article  ADS  Google Scholar 

  • Ogawa, Sh, Kimata, M.: Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review. Materials 11, 458 (2018)

    Article  ADS  Google Scholar 

  • Ordal, M.A., Long, L.L., Bell, R.J., Bell, S.E., Bell, R.R., Alexander, R.W., Ward, C.A.: Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22, 1099–1119 (1983)

    Article  ADS  Google Scholar 

  • Ouyang, Y., Sanvito, S., Guo, J.: Effects of edge chemistry doping on graphene nanoribbon mobility. Surf. Sci. 605, 1643–1648 (2011)

    Article  ADS  Google Scholar 

  • Padooru, Y.R., Yakovlev, A.B., Kaipa, C.S.R., Hanson, G.W., Medina, F., Mesa, F.: Dual capacitive-inductive nature of periodic graphene patches: transmission characteristics at low-terahertz frequencies. Phys. Rev. B 87, 115401 (2013)

    Article  ADS  Google Scholar 

  • Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009)

    Article  Google Scholar 

  • Qian, Z., Kang, S., Rajaram, V., Cassella, C., McGruer, N.E., Rinaldi, M.: Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches. Nat. Nanotechnol. 12, 969–973 (2017)

    Article  ADS  Google Scholar 

  • Sakurai, A., Zhao, B., Zhang, Z.M.: Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model. J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014)

    Article  ADS  Google Scholar 

  • Terrones, H., Lv, R., Terrones, M., Dresselhaus, M.S.: The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75, 062501 (2012)

    Article  ADS  Google Scholar 

  • Whiteside, P.J.D., Chininis, J.A., Hunt, H.K.: Techniques and challenges for characterizing metal thin films with applications in photonics. Coatings 6, 1–26 (2016)

    Article  Google Scholar 

  • Xia, F., Mueller, T., Lin, Y., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009)

    Article  ADS  Google Scholar 

  • Ye, Y.Q., Jin, Y., He, S.: Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B 27, 498–504 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. A. Khavasi for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedeh Barzegar-Parizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar-Parizi, S. Realization of wide-angle and wideband absorber using metallic and graphene-based metasurface for mid-infrared and low THz frequency. Opt Quant Electron 50, 378 (2018). https://doi.org/10.1007/s11082-018-1649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1649-z

Keywords

Navigation