Skip to main content

Advertisement

Log in

Improvement in dye sensitized solar cells from past to present

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Several emerging renewable technologies are available to satisfy the current energy demand and to minimize the effect of environmental degradation caused by high consumption of fossil fuels. These technologies are not mature enough to solve this problem but require more time for improving the efficiency, and cost reduction to become the economical alternative of fossil fuels. In this paper Dye-sensitized solar cell (DSSC) has been discussed in detail owing to advancement in the technology. Since each component of DSSC is responsible for a specific function, therefore, comprehensive literature studies has been done on individual section to understand the technology in depth. All the advancement in sensitizer, semiconductors, electrolyte, electrodes, additives, sealing and anchoring groups are included in this review with performance parameter of DSSC. Focus of this article is to provide summary of all available literature since beginning to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., vol. 25, no. 5, pp. 676–677, May 1954

  • Al-Alwani, M.A.M., Mohamad, A.B., Ludin, N.A., Kadhum, A.A.H., Sopian, K.: Dye-sensitised solar cells: development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renew. Sustain. Energy Rev. 65, 183–213 (2016)

    Google Scholar 

  • Altobello, S., et al.: Sensitization of TiO2 with ruthenium complexes containing boronic acid functions. J. Photochem. Photobiol. Chem. 166(1–3), 91–98 (2004)

    Google Scholar 

  • Athanas, A.B., Thangaraj, S., Kalaiyar, S.: Co-sensitization of ruthenium(II) dye-sensitized solar cells by coumarin based dyes. Chem. Phys. Lett. 699, 32–39 (2018)

    ADS  Google Scholar 

  • Bach, U., et al.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702), 583–585 (1998)

    ADS  Google Scholar 

  • Bagher, A.M.: Introduction to organic solar cells. Sustain. Energy Sustain. Energy 2(3), 85–90 (2014)

    Google Scholar 

  • Bai, Y., et al.: High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat. Mater. 7(8), 626–630 (2008)

    ADS  Google Scholar 

  • Bay, L., West, K., Winther-Jensen, B., Jacobsen, T.: Electrochemical reaction rates in a dye-sensitised solar cell—the iodide/tri-iodide redox system. Sol. Energy Mater. Sol. Cells 90(3), 341–351 (2006)

    Google Scholar 

  • Boschloo, G., Häggman, L., Hagfeldt, A.: Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J. Phys. Chem. B 110(26), 13144–13150 (2006)

    Google Scholar 

  • Breckenridge, R.G., Hosler, W.R.: Electrical properties of titanium dioxide semiconductors. Phys. Rev. 91(4), 793–802 (1953)

    ADS  Google Scholar 

  • Brewster, T.P., et al.: Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells. Inorg. Chem. 52(11), 6752–6764 (2013)

    Google Scholar 

  • Burfeindt, B., Hannappel, T., Storck, W., Willig, F.: Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as acceptor. J. Phys. Chem. 100(41), 16463–16465 (1996)

    Google Scholar 

  • Calestani, D., et al.: Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens. Actuators B Chem. 144(2), 472–478 (2010)

    Google Scholar 

  • Calestani, D., Zha, M.Z., Zanotti, L., Villani, M., Zappettini, A.: Low temperature thermal evaporation growth of aligned ZnO nanorods on ZnO film: a growth mechanism promoted by Zn nanoclusters on polar surfaces. CrystEngComm 13(5), 1707–1712 (2011)

    Google Scholar 

  • Calogero, G., Marco, G.D., Caramori, S., Cazzanti, S., Argazzi, R., Alberto Bignozzi, C.: Natural dye senstizers for photoelectrochemical cells. Energy Environ. Sci. 2(11), 1162–1172 (2009)

    Google Scholar 

  • Calogero, G., et al.: Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. Int. J. Mol. Sci. 11(1), 254–267 (2010)

    Google Scholar 

  • Chava, R.K., Kang, M.: Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 692, 67–76 (2017)

    Google Scholar 

  • Chava, R.K., Lee, W.-M., Oh, S.-Y., Jeong, K.-U., Yu, Y.-T.: Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer. Sol. Energy Mater. Sol. Cells 161, 255–262 (2017)

    Google Scholar 

  • Chen, Y., Zeng, Z., Li, C., Wang, W., Wang, X., Zhang, B.: Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New J. Chem. 29(6), 773–776 (2005)

    Google Scholar 

  • Chen, C.-Y., et al.: Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10), 3103–3109 (2009)

    Google Scholar 

  • Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(2), L638–L640 (2006)

    ADS  Google Scholar 

  • Choi, H., et al.: Stepwise cosensitization of nanocrystalline TiO2 films utilizing Al2O3 layers in dye-sensitized solar cells. Angew. Chem. Int. Ed. 47(43), 8259–8263 (2008)

    Google Scholar 

  • Clifford, J.N., Palomares, E., Nazeeruddin, M.K., Thampi, R., Grätzel, M., Durrant, J.R.: Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. J. Am. Chem. Soc. 126(18), 5670–5671 (2004)

    Google Scholar 

  • Cong, J., et al.: Nitro group as a new anchoring group for organic dyes in dye-sensitized solar cells. Chem. Commun. 48(53), 6663–6665 (2012)

    Google Scholar 

  • Daeneke, T., et al.: Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple. Adv. Mater. 24(9), 1222–1225 (2012)

    Google Scholar 

  • De Marco, L., et al.: Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells. Sol. Energy Mater. Sol. Cells 168, 227–233 (2017)

    ADS  Google Scholar 

  • Desilvestro, J., Graetzel, M., Kavan, L., Moser, J., Augustynski, J.: Highly efficient sensitization of titanium dioxide. J. Am. Chem. Soc. 107(10), 2988–2990 (1985)

    Google Scholar 

  • Desta et al. M.B.: Pyrazine-incorporating panchromatic sensitizers for dye sensitized solar cells under one sun and dim light J. Mater. Chem. A 2018

  • Dhamodharan, P., Manoharan, C., Dhanapandian, S., Venkatachalam, P.: Dye-sensitized solar cell using sprayed ZnO nanocrystalline thin films on ITO as photoanode. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 136, 1671–1678 (2015)

    ADS  Google Scholar 

  • Dumbravă, A., et al.: Dye-sensitized solar cells based on nanocrystalline TiO2 and natural pigments. J. Optoelectron. Adv. Mater. 10(11), 2996–3002 (2008)

    Google Scholar 

  • Edvinsson, T., et al.: Intramolecular charge-transfer tuning of perylenes: spectroscopic features and performance in dye-sensitized solar cells. J. Phys. Chem. C 111(42), 15137–15140 (2007)

    Google Scholar 

  • Ellis, H.: Characterization of dye-sensitized solar cells: Components for environmentally friendly photovoltaics 2014

  • Elmorsy, M.R., Su, R., Fadda, A.A., Etman, H.A., Tawfik, E.H., El-Shafei, A.: Co-sensitization of Ru(II) complex with terthiophene-based D–p–p–A metal-free organic dyes for highly efficient dye-sensitized solar cells: influence of anchoring group on molecular geometry and photovoltaic performance. New J. Chem. 42(14), 11430–11437 (2018)

    Google Scholar 

  • Fabregat-Santiago, F., et al.: Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 111(17), 6550–6560 (2007)

    Google Scholar 

  • Fakharuddin, A., Jose, R., Brown, T.M., Fabregat-Santiago, F., Bisquert, J.: A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 7(12), 3952–3981 (2014)

    Google Scholar 

  • Fernando, J., Senadeera, G.K.R.: Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Curr. Sci. 95(5), 663–666 (2008)

    Google Scholar 

  • Ferrere, S., Gregg, B.A.: New perylenes for dye sensitization of TiO2. New J. Chem. 26(9), 1155–1160 (2002)

    Google Scholar 

  • Ferrere, S., Zaban, A., Gregg, B.A.: Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B 101(23), 4490–4493 (1997)

    Google Scholar 

  • Fukai, Y., Kondo, Y., Mori, S., Suzuki, E.: Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length. Electrochem. Commun. 9(7), 1439–1443 (2007)

    Google Scholar 

  • Furukawa, S., Iino, H., Iwamoto, T., Kukita, K., Yamauchi, S.: Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films 518(2), 526–529 (2009)

    ADS  Google Scholar 

  • Gerischer, H., Michel-Beyerle, M.E., Rebentrost, F., Tributsch, H.: Sensitization of charge injection into semiconductors with large band gap. Electrochim. Acta 13(6), 1509–1515 (1968)

    Google Scholar 

  • Gong, J., Liang, J., Sumathy, K.: Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 16(8), 5848–5860 (2012)

    Google Scholar 

  • Gonzalez-Valls, I., Lira-Cantu, M.: Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2(1), 19–34 (2009)

    Google Scholar 

  • Gorlov, M., Pettersson, H., Hagfeldt, A., Kloo, L.: Electrolytes for dye-sensitized solar cells based on interhalogen ionic salts and liquids. Inorg. Chem. 46(9), 3566–3575 (2007)

    Google Scholar 

  • Gou, F., Jiang, X., Fang, R., Jing, H., Zhu, Z.: Strategy to improve photovoltaic performance of DSSC sensitized by zinc prophyrin using salicylic acid as a tridentate anchoring group. ACS Appl. Mater. Interfaces. 6(9), 6697–6703 (2014)

    Google Scholar 

  • Grätzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 164(1–3), 3–14 (2004)

    Google Scholar 

  • Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005)

    Google Scholar 

  • Grätzel, M.: The advent of mesoscopic injection solar cells. Prog. Photovolt. Res. Appl. 14(5), 429–442 (2006)

    Google Scholar 

  • Grätzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42(11), 1788–1798 (2009)

    Google Scholar 

  • Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015)

    Google Scholar 

  • Greijer Agrell, H., Boschloo, G., Hagfeldt, A.: Conductivity studies of nanostructured TiO2 films permeated with electrolyte. J. Phys. Chem. B 108(33), 12388–12396 (2004)

    Google Scholar 

  • Gu, P., Yang, D., Zhu, X., Sun, H., Li, J.: Performance of dye-sensitized solar cells based on natural dyes. Opt. Quantum Electron. 50(5) 2018

  • Guo, X., et al.: Polymer solar cells with enhanced fill factors. Nat. Photonics 7(10), 825–833 (2013)

    ADS  Google Scholar 

  • Hagfeldt, A., Graetzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995)

    Google Scholar 

  • Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)

    Google Scholar 

  • Halme, J., Vahermaa, P., Miettunen, K., Lund, P.: Device physics of dye solar cells. Adv. Mater. 22(35), E210–E234 (2010)

    Google Scholar 

  • Hao, S., Wu, J., Huang, Y., Lin, J.: Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 80(2), 209–214 (2006)

    ADS  Google Scholar 

  • Hardin, B.E., et al.: Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells. J. Am. Chem. Soc. 133(27), 10662–10667 (2011)

    Google Scholar 

  • Hashmi, G., et al.: Review of materials and manufacturing options for large area flexible dye solar cells. Renew. Sustain. Energy Rev. 15(8), 3717–3732 (2011)

    Google Scholar 

  • Hattori, S., Wada, Y., Yanagida, S., Fukuzumi, S.: Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 127(26), 9648–9654 (2005)

    Google Scholar 

  • Hauch, A., Georg, A.: Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46(22), 3457–3466 (2001)

    Google Scholar 

  • He, Z., et al.: Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23(40), 4636–4643 (2011)

    Google Scholar 

  • He, H., Gurung, A., Si, L.: 8-Hydroxylquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells. Chem. Commun. 48(47), 5910–5912 (2012)

    Google Scholar 

  • Heng, L., Wang, X., Yang, N., Zhai, J., Wan, M., Jiang, L.: p–n-junction-based flexible dye-sensitized solar cells. Adv. Funct. Mater. 20(2), 266–271 (2010)

    Google Scholar 

  • Hilal, H.M., El Bitar Nehme, M.A., Ghaddar, T.H.: Large Enhancement of Dye Sensitized Solar Cell Efficiency by Co-sensitizing Pyridyl- and Carboxylic Acid-Based Dyes. ACS Appl. Energy Mater. 1(6), 2776–2783 (2018)

    Google Scholar 

  • Hosseinnezhad, M., Rouhani, S., Gharanjig, K.: Extraction and application of natural pigments for fabrication of green dye-sensitized solar cells. Opto-Electron. Rev. 26(2), 165–171 (2018)

    Google Scholar 

  • Huang, S.Y., Schlichthörl, G., Nozik, A.J., Grätzel, M., Frank, A.J.: Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101(14), 2576–2582 (1997)

    Google Scholar 

  • Hwang, S., et al.: A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. 46, 4887–4889 (2007)

    Google Scholar 

  • Insuasty, A., Ortiz, A., Tigreros, A., Solarte, E., Insuasty, B., Martín, N.: 2-(1,1-dicyanomethylene)rhodanine: a novel, efficient electron acceptor. Dyes Pigments 88(3), 385–390 (2011)

    Google Scholar 

  • Gong, J., Sumathy, K., Qiao, Q., Zhou, Z.: Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev., 68 Part 1, pp. 234–246, (2017)

    Google Scholar 

  • Jamalullail, N., Smohamad, I., Nnorizan, M., Mahmed, N.: Enhancement of energy conversion efficiency for dye sensitized solar cell using zinc oxide photoanode. IOP Conf. Ser. Mater. Sci. Eng. 374, 012048 (2018)

    Google Scholar 

  • Jayaweera, P.M., Kumarasinghe, A.R., Tennakone, K.: Nano-porous TiO2 photovoltaic cells sensitized with metallochromic triphenylmethane dyes: [n-TiO2/triphenylmethane dye/p-I −/I3 − (or CuI)]. J. Photochem. Photobiol. Chem. 126(1–3), 111–115 (1999)

    Google Scholar 

  • Jono, R., Fujisawa, J., Segawa, H., Yamashita, K.: Theoretical study of the surface complex between TiO2 and TCNQ showing interfacial charge-transfer transitions. J. Phys. Chem. Lett. 2(10), 1167–1170 (2011)

    Google Scholar 

  • Jose, R., Thavasi, V., Ramakrishna, S.: Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92(2), 289–301 (2009)

    Google Scholar 

  • Karlsson, K.M.: Design, Synthesis and Properties of Organic Sensitizers for Dye Sensitized Solar Cells 2011

  • Kakiuchi, K., Hosono, E., Fujihara, S.: Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719. J. Photochem. Photobiol. Chem. 179(1–2), 81–86 (2006)

    Google Scholar 

  • Kay, A., Graetzel, M.: Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97(23), 6272–6277 (1993)

    Google Scholar 

  • Kay, A., Grätzel, M.: Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99–117 (1996)

    Google Scholar 

  • Keis, K., Magnusson, E., Lindström, H., Lindquist, S.-E., Hagfeldt, A.: A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells 73(1), 51–58 (2002)

    Google Scholar 

  • Kelly, C.A., Farzad, F., Thompson, D.W., Stipkala, J.M., Meyer, G.J.: Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2. Langmuir 15(20), 7047–7054 (1999)

    Google Scholar 

  • Khan, M.: A Study on the Optimization of Dye-Sensitized Solar Cells. Grad. Theses Diss. 2013

  • Khanmohammadi, K., Sohrabi, B., Zamani Meymian, M.R.: Effect of electron-donating and -withdrawing substitutions in naphthoquinone sensitizers: the structure engineering of dyes for DSSCs. J. Mol. Struct. 1167, 274–279 (2018)

    ADS  Google Scholar 

  • Kopidakis, N., Neale, N.R., Frank, A.J.: Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation. J. Phys. Chem. B 110(25), 12485–12489 (2006)

    Google Scholar 

  • Kron, G., Egerter, T., Werner, J.H., Rau, U.: Electronic transport in dye-sensitized nanoporous TiO2 solar cellscomparison of electrolyte and solid-state devices. J. Phys. Chem. B 107(15), 3556–3564 (2003)

    Google Scholar 

  • Kumara, G.R.A., Kaneko, S., Okuya, M., Onwona-Agyeman, B., Konno, A., Tennakone, K.: Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy Mater. Sol. Cells 90(9), 1220–1226 (2006)

    Google Scholar 

  • Lai, W.H., Su, Y.H., Teoh, L.G., Hon, M.H.: Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J. Photochem. Photobiol. Chem. 195(2–3), 307–313 (2008)

    Google Scholar 

  • Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455–459 (2005)

    ADS  Google Scholar 

  • Li, B., Wang, L., Kang, B., Wang, P., Qiu, Y.: Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006a)

    Google Scholar 

  • Li, J., Osasa, T., Hirayama, Y., Sano, T., Wakisaka, K., Matsumura, M.: Solid-state dye-sensitized solar cells using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] as a hole-transporting material. Jpn. J. Appl. Phys. 45(11), 8728–8732 (2006b)

    ADS  Google Scholar 

  • Li, C., et al.: An improved perylene sensitizer for solar cell applications. Chemsuschem 1(7), 615–618 (2008)

    Google Scholar 

  • Li, S.-F., Yang, X.-C., Cheng, M., Zhao, J.-H., Wang, Y., Sun, L.-C.: Novel D–π–A type II organic sensitizers for dye sensitized solar cells. Tetrahedron Lett. 53(27), 3425–3428 (2012)

    Google Scholar 

  • Li, P., Song, C., Wang, Z., Li, J., Zhang, H.: Molecular design towards suppressing electron recombination and enhancing the light-absorbing ability of dyes for use in sensitized solar cells: a theoretical investigation. New J. Chem. 2018

  • Lu, F., Yang, G., Xu, Q., Zhang, J., Zhang, B., Feng, Y.: Tailoring the benzotriazole (BTZ) auxiliary acceptor in a D-A′-π-A type sensitizer for high performance dye-sensitized solar cells (DSSCs). Dyes Pigments 158, 195–203 (2018)

    Google Scholar 

  • Luo, P., Niu, H., Zheng, G., Bai, X., Zhang, M., Wang, W.: From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 74(4), 936–942 (2009)

    ADS  Google Scholar 

  • Marszalek, M.A.: Dye-sensitized Solar Cells: Detailed Studies Focused on the Molecular Engineering of D-[pi]-A Dyes and the Optimization of the Application of Ionic-liquid-based Electrolytes 2013

  • Marinado, T., et al.: Rhodanine dyes for dye-sensitized solar cells: spectroscopy, energy levels and photovoltaic performance. Phys. Chem. Chem. Phys. 11(1), 133–141 (2008)

    Google Scholar 

  • Martinson, A.B., Elam, J.W., Hupp, J.T., Pellin, M.J.: ZnO nanotube based dye-sensitized solar cells. Nano Lett. 7(8), 2183–2187 (2007)

    ADS  Google Scholar 

  • Massin, J., Ducasse, L., Toupance, T., Olivier, C.: Tetrazole as a new anchoring group for the functionalization of TiO2 nanoparticles: a joint experimental and theoretical study. J. Phys. Chem. C 118(20), 10677–10685 (2014)

    Google Scholar 

  • McNamara, W.R., et al.: Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)—terpyridine complexes. J. Am. Chem. Soc. 130(43), 14329–14338 (2008)

    Google Scholar 

  • McNamara, W.R., et al.: Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energy Environ. Sci. 2(11), 1173–1175 (2009)

    Google Scholar 

  • McNamara, W.R., et al.: Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer. Energy Environ. Sci. 3(7), 917–923 (2010)

    Google Scholar 

  • Memarian, N., Concina, I., Braga, A., Rozati, S.M., Vomiero, A., Sberveglieri, G.: Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew. Chem. 123(51), 12529–12533 (2011)

    Google Scholar 

  • Michinobu, T., Satoh, N., Cai, J., Li, Y., Han, L.: Novel design of organic donor–acceptor dyes without carboxylic acid anchoring groups for dye-sensitized solar cells. J. Mater. Chem. C 2(17), 3367–3372 (2014)

    Google Scholar 

  • Miettunen, K., Vapaavuori, J., Poskela, A., Tiihonen, A., Lund, P.D.: Recent progress in flexible dye solar cells. Wiley Interdiscip. Rev. Energy Environ., p. e302, May 2018

    Google Scholar 

  • Mishra, A., Fischer, M.K.R., Bäuerle, P.: Metal-Free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. 48(14), 2474–2499 (2009)

    Google Scholar 

  • Moreira Gonçalves, L., Bermudez, V., AguilarRibeiro, H., Magalhães Mendes, A.: Dye -sensitized solar cells: a safe bet for the future. Energy Environ. Sci. 1(6), 655–667 (2008)

    Google Scholar 

  • Moser, J.: Note about the gain photoelectric currents by optical sensitization. Monatsh. Chem. 8, 373 (1887)

    Google Scholar 

  • Mozaffari, S., Nateghi, M.R., Zarandi, M.B.: An overview of the Challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 71, 675–686 (2017)

    Google Scholar 

  • Murakoshi, K., Kogure, R., Wada, Y., Yanagida, S.: Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett. 26(5), 471–472 (1997)

    Google Scholar 

  • Nazeeruddin, M.K., et al.: Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)

    Google Scholar 

  • Nazeeruddin, M.K., Pechy, P., Grätzel, M.: Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex. Chem. Commun. 18, 1705–1706 (1997)

    Google Scholar 

  • Nazeeruddin, M.K., et al.: Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123(8), 1613–1624 (2001)

    Google Scholar 

  • Nazeeruddin, M.K., Humphry-Baker, R., Officer, D.L., Campbell, W.M., Burrell, A.K., Grätzel, M.: Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20(15), 6514–6517 (2004)

    Google Scholar 

  • Nazeeruddin, M.K., Klein, C., Liska, P., Grätzel, M.: Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coord. Chem. Rev. 249(13–14), 1460–1467 (2005)

    Google Scholar 

  • Nazeeruddin, M.K., Baranoff, E., Grätzel, M.: Dye-sensitized solar cells: a brief overview. Sol. Energy 85(6), 1172–1178 (2011)

    ADS  Google Scholar 

  • Nguyen, P.T., Nguyen, N.P.D., Nguyen, L.T.: 4,4′-dinonyl-2,2′-bipyridine as an alternative electrolyte additive for improving the thermal stability of ruthenium dyes in dye-sensitized solar cells. J. Phys. Chem. Solids 122, 234–238 (2018)

    ADS  Google Scholar 

  • O’Regan, B., Schwartz, D.T.: Efficient photo-hole injection from adsorbed cyanine dyes into electrodeposited copper (I) thiocyanate thin films. Chem. Mater. 7(7), 1349–1354 (1995)

    Google Scholar 

  • O’regan, B., Grfitzeli, M.: A low-cost, high-efficiency solar cell based on dye-sensitized. nature, vol. 353, no. 6346, pp. 737–740, 1991

    ADS  Google Scholar 

  • Odobel, F., Pellegrin, Y., Warnan, J.: Bio-inspired artificial light-harvesting antennas for enhancement of solar energy capture in dye -sensitized solar cells. Energy Environ. Sci. 6(7), 2041–2052 (2013)

    Google Scholar 

  • Olea, A., Ponce, G., Sebastian, P.J.: Electron transfer via organic dyes for solar conversion. Sol. Energy Mater. Sol. Cells 59(1–2), 137–143 (1999)

    Google Scholar 

  • Ooyama, Y., Hagiwara, Y., Oda, Y., Mizumo, T., Harima, Y., Ohshita, J.: Dye-sensitized solar cells based on a functionally separated D–π–A fluorescent dye with an aldehyde as an electron-accepting group. New J. Chem. 37(8), 2336–2340 (2013)

    Google Scholar 

  • Ooyama, Y., Yamada, T., Fujita, T., Harima, Y., Ohshita, J.: Development of D–π–Cat fluorescent dyes with a catechol group for dye-sensitized solar cells based on dye-to-TiO2 charge transfer. J. Mater. Chem. A 2(22), 8500–8511 (2014)

    Google Scholar 

  • Oskam, G., Bergeron, B.V., Meyer, G.J., Searson, P.C.: Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B 105(29), 6867–6873 (2001)

    Google Scholar 

  • Ozser, M.E., Mohiuddin, O.: Synthesis, photophysical, structural and electronic properties of novel regioisomerically pure 1,7-disubstituted perylene-3,4,9,10-tetracarboxylic monoimide dibutylester derivatives. J. Mol. Struct. 1158, 145–155 (2018)

    ADS  Google Scholar 

  • Ozser, M.E., Sarkodie, S.A., Mohiuddin, O., Ozesme, G.: Novel derivatives of regioisomerically pure 1,7-disubstituted perylene diimide dyes bearing phenoxy and pyrrolidinyl substituents: synthesis, photophysical, thermal, and structural properties. J. Lumin. 192, 414–423 (2017)

    Google Scholar 

  • Papageorgiou, N., et al.: The performance and stability of ambient temperature molten salts for solar cell applications. J. Electrochem. Soc. 143(10), 3099–3108 (1996)

    Google Scholar 

  • Park, H., Bae, E., Lee, J.-J., Park, J., Choi, W.: Effect of the anchoring group in Ru—bipyridyl sensitizers on the photoelectrochemical behavior of dye-sensitized TiO2 electrodes: carboxylate versus phosphonate linkages. J. Phys. Chem. B 110(17), 8740–8749 (2006)

    Google Scholar 

  • Parks, G.A.: The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65(2), 177–198 (1965)

    Google Scholar 

  • Parsa, Z., Naghavi, S.S, Safari N.: Designing Push–Pull Porphyrins for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. A, Jul. 2018

  • Patil, D., et al.: A new class of triphenylamine-based novel sensitizers for DSSCs: a comparative study of three different anchoring groups. New J. Chem. 42(14), 11555–11564 (2018)

    Google Scholar 

  • Peter, L.M.: Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phys. 9(21), 2630–2642 (2007)

    Google Scholar 

  • Pettersson, H., et al.: The monolithic multicell: a tool for testing material components in dye-sensitized solar cells. Prog. Photovolt. Res. Appl. 15(2), 113–121 (2007)

    MathSciNet  Google Scholar 

  • Polo, A.S., Murakami Iha, N.Y.: Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol. Energy Mater. Sol. Cells 90(13), 1936–1944 (2006)

    Google Scholar 

  • Pugliese D.: New insights in Dye-sensitized Solar Cells: novel nanostructured photoanodes, metal-free dye, quasi-solid electrolytes and physics-based modeling. Ph.D., Politecnico di Torino, 2014

  • Pullerits, T., Sundström, V.: Photosynthetic light-harvesting pigment—protein complexes: toward understanding how and why. Acc. Chem. Res. 29(8), 381–389 (1996)

    Google Scholar 

  • Punitharasu, V., Mele Kavungathodi, M.F., Nithyanandhan, J.: Self-assembly of Cis-configured squaraine dyes at the TiO2 -dye interface: far-red active dyes for dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 10(19), 16541–16551 (2018)

    Google Scholar 

  • Qi, B., Wang, J.: Open-circuit voltage in organic solar cells. J. Mater. Chem. 22(46), 24315–24325 (2012)

    Google Scholar 

  • Qi, B., Wang, J.: Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 15(23), 8972–8982 (2013)

    Google Scholar 

  • Qian, J., et al.: TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater. 21(36), 3663–3667 (2009)

    Google Scholar 

  • Ramasamy, E., Lee, J.: Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells. J. Phys. Chem. C 114(50), 22032–22037 (2010)

    Google Scholar 

  • Ravirajan, P., et al.: Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 110(15), 7635–7639 (2006)

    Google Scholar 

  • Redfern, P.C., Zapol, P., Curtiss, L.A., Rajh, T., Thurnauer, M.C.: Computational studies of catechol and water interactions with titanium oxide nanoparticles. J. Phys. Chem. B 107(41), 11419–11427 (2003)

    Google Scholar 

  • Redmond, G., Fitzmaurice, D., Graetzel, M.: Visible light sensitization by cis-bis(thiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II) of a transparent nanocrystalline ZnO film prepared by sol–gel techniques. Chem. Mater. 6(5), 686–691 (1994)

    Google Scholar 

  • Rekioua, D., Matagne, E.: “Photovoltaic Applications Overview”, in Optimization of Photovoltaic Power Systems, pp. 1–29. Springer, London (2012)

    Google Scholar 

  • Richhariya, G., Kumar, A.: Fabrication and characterization of mixed dye: natural and synthetic organic dye. Opt. Mater. 79, 296–301 (2018)

    ADS  Google Scholar 

  • Richhariya, G., Kumar, A., Tekasakul, P., Gupta, B.: Natural dyes for dye sensitized solar cell: a review. Renew. Sustain. Energy Rev. 69, 705–718 (2017)

    Google Scholar 

  • Sahu, G.: Investigating the Electron Transport and Light Scattering Enhancement in Radial Core-Shell Metal-Metal Oxide Novel 3D Nanoarchitectures for Dye Sensitized Solar Cells. Univ. New Orleans Theses Diss., May 2012

  • Saito, M., Fujihara, S.: Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ. Sci. 1(2), 280–283 (2008)

    Google Scholar 

  • Saito, Y., Kitamura, T., Wada, Y., Yanagida, S.: Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 31(10), 1060–1061 (2002)

    Google Scholar 

  • Sandquist, C., McHale, J.L.: Improved efficiency of betanin-based dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 221(1), 90–97 (2011)

    Google Scholar 

  • Sanjay, P., Deepa, K., Madhavan, J., Senthil, S.: Optical, spectral and photovoltaic characterization of natural dyes extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea used as sensitizers for ZnO based dye sensitized solar cells. Opt. Mater. 83, 192–199 (2018)

    ADS  Google Scholar 

  • Sapp, S.A., Elliott, C.M., Contado, C., Caramori, S., Bignozzi, C.A.: Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 124(37), 11215–11222 (2002)

    Google Scholar 

  • Shahroosvand, H., Abbasi, P., Bideh, B.N.: Dye-sensitized solar cell based on novel star-shaped ruthenium polypyridyl sensitizer: new insight into the relationship between molecular designing and its outstanding charge carrier dynamics. ChemistrySelect 3(24), 6821–6829 (2018)

    Google Scholar 

  • Sharma, S., Siwach, B., Ghoshal, S.K., Mohan, D.: Dye sensitized solar cells: from genesis to recent drifts. Renew. Sustain. Energy Rev. 70, 529–537 (2017)

    Google Scholar 

  • Shen, X., Xu, W., Xu, J., Liang, G., Yang, H., Yao, M.: Quasi-solid-state dye-sensitized solar cells based on gel electrolytes containing different alkali metal iodide salts. Solid State Ion. 179(35–36), 2027–2030 (2008)

    Google Scholar 

  • Sinha, D., De, D., Ayaz, A.: Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 193, 467–474 (2018)

    ADS  Google Scholar 

  • Sirimanne, P.M., Senevirathna, M.K.I., Premalal, E.V.A., Pitigala, P.K.D.D.P., Sivakumar, V., Tennakone, K.: Utilization of natural pigment extracted from pomegranate fruits as sensitizer in solid-state solar cells. J. Photochem. Photobiol. Chem. 177(2–3), 324–327 (2006)

    Google Scholar 

  • Somani, P.R., Radhakrishnan, S.: Solid state electrochemical reaction in photocells made using conducting polyaniline and sensitized with methylene blue. J. Solid State Electrochem. 7(3), 166–170 (2003)

    Google Scholar 

  • Tan, B., Toman, E., Li, Y., Wu, Y.: Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J. Am. Chem. Soc. 129(14), 4162–4163 (2007)

    Google Scholar 

  • Tang, J., Qu, S., Hu, J., Wu, W., Hua, J.: A new organic dye bearing aldehyde electron-withdrawing group for dye-sensitized solar cell. Sol. Energy 86(9), 2306–2311 (2012)

    ADS  Google Scholar 

  • Tennakone, K., Kumara, G.R.R.A., Kumarasinghe, A.R., Wijayantha, K.G.U., Sirimanne, P.M.: A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 10(12), 1689–1693 (1995)

    ADS  Google Scholar 

  • Tiwari, A., Snure, M.: Synthesis and characterization of ZnO nano-plant-like electrodes. J. Nanosci. Nanotechnol. 8(8), 3981–3987 (2008)

    Google Scholar 

  • Tributsch, H.: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis*. Photochem. Photobiol. 16(4), 261–269 (1972)

    Google Scholar 

  • Tributsch, H., Calvin, M.: Electrochemistry of excited molecules: photo-electrochemical reactions of chlorophylls*. Photochem. Photobiol. 14(2), 95–112 (1971)

    Google Scholar 

  • Tributsch, H., Gerischer, H.: The use of semiconductor electrodes in the study of photochemical reactions. Berichte Bunsenges. Für Phys. Chem. 73(8–9), 850–854 (1969)

    Google Scholar 

  • Tsubomura, H., Matsumura, M., Nomura, Y., Amamiya, T.: Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261(5559), 402–403 (1976)

    ADS  Google Scholar 

  • Tulloch, G.E.: Light and energy—dye solar cells for the 21st century. J. Photochem. Photobiol. Chem. 164(1–3), 209–219 (2004)

    Google Scholar 

  • Vlachopoulos, N., Liska, P., Augustynski, J., Grätzel, M.: Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J. Am. Chem. Soc. 110(4), 1216–1220 (1988)

    Google Scholar 

  • Vo, A.Q.: Degradation of the solar cell dye sensitizer N719. Preliminary building of the dye-sensitized solar cells, 2006

  • Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Grätzel, M.: Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125(5), 1166–1167 (2003)

    Google Scholar 

  • Wang, P., Zakeeruddin, S.M., Moser, J.-E., Humphry-Baker, R., Grätzel, M.: A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J. Am. Chem. Soc. 126(23), 7164–7165 (2004)

    Google Scholar 

  • Wang, P., Klein, C., Humphry-Baker, R., Zakeeruddin, S.M., Graetzel, M.: A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J. Am. Chem. Soc. 127(3), 808–809 (2005a)

    Google Scholar 

  • Wang, X.-F., et al.: Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers. Chem. Phys. Lett. 408(4–6), 409–414 (2005b)

    ADS  Google Scholar 

  • Wang, Z.-S., Cui, Y., Dan-oh, Y., Kasada, C., Shinpo, A., Hara, K.: Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells. J. Phys. Chem. C 112(43), 17011–17017 (2008)

    Google Scholar 

  • Wang, L., Yang, X., Li, S., Cheng, M., Sun, L.: A new type of organic sensitizers with pyridine-N-oxide as the anchoring group for dye-sensitized solar cells. RSC Adv. 3(33), 13677–13680 (2013)

    Google Scholar 

  • Wang, L., Yang, X., Zhao, J., Zhang, F., Wang, X., Sun, L.: Efficient organic sensitizers with pyridine-N-oxide as an anchor group for dye-sensitized solar cells. Chemsuschem 7(9), 2640–2646 (2014)

    Google Scholar 

  • Warnan, J., et al.: Ruthenium sensitizer functionalized by acetylacetone anchoring groups for dye-sensitized solar cells. J. Phys. Chem. C 117(17), 8652–8660 (2013)

    Google Scholar 

  • Wongcharee, K., Meeyoo, V., Chavadej, S.: Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol. Energy Mater. Sol. Cells 91(7), 566–571 (2007)

    Google Scholar 

  • Wu, J., et al.: Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 46(19), 5975–6023 (2017)

    Google Scholar 

  • Xiang, J.H., Zhu, P.X., Masuda, Y., Okuya, M., Kaneko, S., Koumoto, K.: Flexible solar-cell from zinc oxide nanocrystalline sheets self-assembled by an in-situ electrodeposition process. J. Nanosci. Nanotechnol. 6(6), 1797–1801 (2006)

    Google Scholar 

  • Yamazaki, E., Murayama, M., Nishikawa, N., Hashimoto, N., Shoyama, M., Kurita, O.: Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Sol. Energy 81(4), 512–516 (2007)

    ADS  Google Scholar 

  • Yan, Z., Guang, S., Su, X., Xu, H.: Near-infrared absorbing squaraine dyes for solar cells: relationship between architecture and performance. J. Phys. Chem. C 116(16), 8894–8900 (2012)

    Google Scholar 

  • Yella, A., et al.: Porphyrin-sensitized solar cells with cobalt (ii/iii)–based redox electrolyte exceed 12% efficiency. Science 334(6056), 629–634 (2011)

    ADS  Google Scholar 

  • Yum, J.-H., et al.: Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chem. Commun. 44, 4680–4682 (2007)

    Google Scholar 

  • Zafer, C., et al.: New perylene derivative dyes for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91(5), 427–431 (2007)

    Google Scholar 

  • Zakeeruddin, S.M., Grätzel, M.: Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells. Adv. Funct. Mater. 19(14), 2187–2202 (2009)

    Google Scholar 

  • Zanni, MT., Greenblatt, B.J., Davis, A.V., Neumark, D.M.: Photodissociation of gas phase I3 − using femtosecond photoelectron spectroscopy. J. Chem. Phys. 111(7), 2991–3003 (1999)

    ADS  Google Scholar 

  • Zhang, L., Cole, J.M.: Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 7(6), 3427–3455 (2015)

    Google Scholar 

  • Zhang, Z., Evans, N., Zakeeruddin, S.M., Humphry-Baker, R., Grätzel, M.: Effects of ω-guanidinoalkyl acids as coadsorbents in dye-sensitized solar cells. J. Phys. Chem. C 111(1), 398–403 (2007)

    Google Scholar 

  • Zhang, D., Lanier, S.M., Downing, J.A., Avent, J.L., Lum, J., McHale, J.L.: Betalain pigments for dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 195(1), 72–80 (2008)

    Google Scholar 

  • Zhang, C., Huang, Y., Huo, Z., Chen, S., Dai, S.: Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability. J. Phys. Chem. C 113(52), 21779–21783 (2009)

    Google Scholar 

  • Zhang, L., Cole, J.M., Waddell, P.G., Low, K.S., Liu, X.: Relating electron donor and carboxylic acid anchoring substitution effects in azo dyes to dye-sensitized solar cell performance. ACS Sustain. Chem. Eng. 1(11), 1440–1452 (2013)

    Google Scholar 

  • Zhang, L., Cole, J.M., Dai, C.: Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups. ACS Appl. Mater. Interfaces. 6(10), 7535–7546 (2014)

    Google Scholar 

  • Zhao, J., Yang, X., Cheng, M., Li, S., Sun, L.: Molecular design and performance of hydroxylpyridium sensitizers for dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 5(11), 5227–5231 (2013)

    Google Scholar 

  • Zhou, H., Wu, L., Gao, Y., Ma, T.: Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. Chem. 219(2–3), 188–194 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumali Sabah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohiuddin, O., Obaidullah, M. & Sabah, C. Improvement in dye sensitized solar cells from past to present. Opt Quant Electron 50, 377 (2018). https://doi.org/10.1007/s11082-018-1647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1647-1

Keywords

Navigation