Skip to main content
Log in

A tunable dual-band THz absorber based on graphene sheet and ribbons

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A tunable terahertz dual band absorber consisted of graphene ribbon arrays and a graphene sheet with near-unity absorption is proposed and studied in this letter. With the coupling enhancement of graphene ribbon and graphene sheet, a perfect dual band absorber with absorption over 99% at 3.67 THz and 5.88 THz is achieved. Moreover, the principal of the coupling enhancement is analyzed. By optimizing the parameters of the structure, not only the absorption can be enhanced, but also the center of absorbing frequency could be shifted. Another approach to adjust the absorber–tuning the chemical potential of graphene which is more convenient and timely is investigated. Furthermore, the sensing of the refractive index is emulated by changing the refractive index of the medium on the top. Results show a broad application prospect of the absorber proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amin, M., Farhat, M., Bac, H.: An ultra-broadband multilayered graphene absorber. Opt. Express 21, 29938–29948 (2013)

    Article  ADS  Google Scholar 

  • Arik, K., Abdollahramezani, S., Khavasi, A.: Polarization insensitive and broadband terahertz absorber using graphene disks. Plasmonics 12, 1–6 (2017)

    Article  Google Scholar 

  • Bian, L.A., Liu, P., Han, Z.: Near-unity absorption in a graphene-embedded defective photonic crystals array. Superlatt. Microstruct. 104, 461–469 (2017)

    Article  ADS  Google Scholar 

  • Cheng, Z., Tsang, H.K., Wang, X.: In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE J. Sel. Top. Quantum Electron. 20, 43–48 (2013)

    Article  ADS  Google Scholar 

  • Farmer, D.B., Rodrigo, D., Low, T.: Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene. Nano Lett. 15, 2582–2587 (2015)

    Article  ADS  Google Scholar 

  • Hanson, G.W.: Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 19912–19918 (2008)

    Article  Google Scholar 

  • Ju, L., Geng, B., Horng, J.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)

    Article  ADS  Google Scholar 

  • Koppens, F.H.L., Chang, D.E., Abajo, F.J.G.D.: Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011)

    Article  ADS  Google Scholar 

  • Li, P., Wang, T., Bckmann, H.: Graphene-enhanced infrared near-field microscopy. Nano Lett. 14, 4400–4405 (2014)

    Article  ADS  Google Scholar 

  • Moreau, A., Ciraci, C., Mock, J.J.: Controlled reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012)

    Article  ADS  Google Scholar 

  • Nair, R.R., Blake, P., Grigorenko, A.N.: Fine structure constant defines visual tranparency of graphene. Science 320, 1308–1308 (2008)

    Article  ADS  Google Scholar 

  • Nath, J., Modak, S., Rezadad, I.: Far-infrared absorber based on standing-wave resonances in metal–dielectric–metal cavity. Opt. Express 23, 20366–20380 (2015)

    Article  ADS  Google Scholar 

  • Rodin, A.S., Fei, Z., Mcleod, A.S., et al.: Plasmonic hot spots in triangular tapered graphene microcrystals. [J]. arXiv:1309.1909,1–4 (2013)

  • Tao, H., Bingham, C.M., Pilon, D.: A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 42, 225102–225124 (2010)

    Article  ADS  Google Scholar 

  • Vasi, B., Isi, G., Gaji, R.: Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies. J. Appl. Phys. 113, 21556–21564 (2013)

    Google Scholar 

  • Wang, G.Z., Wang, B.X.: Five-band terahertz metamaterial absorber based on a four-gap comb resonator. J. Lightwave Technol. 33, 5151–5156 (2015)

    Article  ADS  Google Scholar 

  • Wang, Z., Zhou, M., Lin, X.: A circuit method to integrate metamaterial and graphene in absorber design. Opt. Commun. 329, 76–80 (2014)

    Article  ADS  Google Scholar 

  • Wang, B.X., Zhai, X., Wang, G.Z.: A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. 117, 2075–2081 (2015)

    Google Scholar 

  • Xiao, T., Cheng, Z., Goda, K.: Graphene-on-silicon hybrid plasmonic–photonic integrated circuits. Nanotechnology 28, 245201–245209 (2017)

    Article  ADS  Google Scholar 

  • Xiao, B., Gu, M., Xiao, S.: Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl. Opt. 56, 5458–5462 (2017)

    Article  ADS  Google Scholar 

  • Xu, B.Z., Gu, C.Q., Li, Z.: A novel structure for tunable terahertz absorber based on graphene. Opt. Express 21, 23803–23811 (2013)

    Article  ADS  Google Scholar 

  • Yu, R., Alaee, R., Lederer, F.: Manipulating the interaction between localized and delocalized surface plasmon polaritons in graphene. Phys. Rev. B 90, 085409–085414 (2014)

    Article  ADS  Google Scholar 

  • Zhang, Y., Feng, Y., Zhu, B.: Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 22, 22743–22752 (2014)

    Article  ADS  Google Scholar 

  • Zhu, B., Ren, G., Zheng, S.: Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express 21, 17089–17096 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by 2016 Zhejiang Provincial Natural Science Foundation under Grant No. LY16F010010, in part by 2015 Zhejiang Province Public Welfare of International Cooperation Project under Grant No. 2015C34006 and in part by 2016 Zhejiang Province Public Welfare of International Cooperation Project under Grant No. 2016C34003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Lin, H., Xiao, L. et al. A tunable dual-band THz absorber based on graphene sheet and ribbons. Opt Quant Electron 50, 370 (2018). https://doi.org/10.1007/s11082-018-1638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1638-2

Keywords

Navigation