Skip to main content
Log in

Application of entropies to the study of the decoherence of magnetopolaron in 0-D nanosystem

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Many methods have been experimented to study decoherence in quantum dot (QD). Tsallis, Shannon and Gaussian entropy have been used to study decoherence separately; in this paper, we compared the results of the Gaussian, Shannon, and Tsallis entropies in 0-D nanosystem. The linear combination operator and the unitary transformation was used to derive the magnetopolaron spectrum that strongly interacts with the LO phonons in the presence of an electric field in the pseudoharmonic and delta quantum dot. Numerical results revealed for the quantum pseudo dot that: (i) the amplitude of Gauss entropy is greater than the amplitude of Tsallis entropy which in turn is greater than the amplitude of Shannon entropy. The Tsallis entropy is not more significant in nanosystem compared to Shannon and Gauss entropies, (ii) with an increase of the zero point, the dominance of the Gauss entropy on the Shannon entropy was observed on one hand and the dominance of the Shannon entropy on the Tsallis entropy on the other hand; this suggested that in nanosystem, Gauss entropy is more suitable in the evaluation of the average of information in the system, for the delta quantum dot it was observed that (iii) when the Gauss entropy is considered, a lot of information about the system is missed. The collapse revival phenomenon in Shannon entropy was observed in RbCl and GaAs delta quantum dot with the enhancement of delta parameter; with an increase in this parameter, the system in the case of CsI evolved coherently; with Shannon and Tsallis entropies, information in the system is faster and coherently exchanged; (iv) the Shannon entropy is more significant because its amplitude outweighs the others when the delta dimension length enhances. The Tsallis entropy involves as wave bundle; which oscillate periodically with an increase of the oscillation period when delta dimension length is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Averin, D.V.: Adiabatic quantum computation with Cooper pairs. Solid State Commun. 105(10), 659–664 (1998)

    Article  ADS  Google Scholar 

  • Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Cai, C.Y., Zhao, C.L., Xiao, J.L.: Influence of temperature and magnetic field on the first excited state of a quantum pseudodot. J. Electron. Mater. 46(2), 971–973 (2017)

    Article  ADS  Google Scholar 

  • Chuev, G.N., Lakhno, V.D.: Perspectives of Polarons. World Scientific, Singapore (1996)

    Book  Google Scholar 

  • Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4093 (1995)

    Article  ADS  Google Scholar 

  • Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400(1818), 97–117 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • Deutsch, D.: Quantum computational networks. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 425(1868), 73–90 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  • Fotue, A.J., Kenfack, S.C., Issofa, N., Tiotsop, M., Tabue Djemmo, M.P., Wirngo, A.V., Fotsin, H.B., Fai, L.C.: Decoherence of polaron in asymmetric quantum dot qubit under an electromagnetic field. Am. J. Mod. Phys. 4(3), 138–148 (2015)

    Article  Google Scholar 

  • Fotue, A.J., Issofa, N., Tiotsop, M., Kenfack, S.C., Tabue Djemmo, M.P., Wirngo, A.V., Fotsin, H., Fai, L.C.: Bound magneto-polaron in triangular quantum dot qubit under an electric field. Superlattices Microstruct. 90, 20–29 (2016a)

    Article  ADS  Google Scholar 

  • Fotue, A.J., Fobasso, M.F.C., Kenfack, S.C., Tiotsop, M., Djomou, J.R., Ekosso, C.M., Nguimeya, G.P., Danga, J.E., Tsiaze, R.K., Fai, L.C.: Tunable potentials and decoherence effect on polaron in nanostructures. Eur. Phys. J. Plus 131(6), 1–15 (2016b)

    Article  Google Scholar 

  • Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275(5298), 350–356 (1997)

    Article  MathSciNet  Google Scholar 

  • Haroche, S.: Entanglement, decoherence and the quantum/classical boundary. Phys. Today 51(7), 36–42 (1998)

    Article  Google Scholar 

  • Hopfield, J.J., Herz, A.V.: Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons. Proc. Natl. Acad. Sci. 92(15), 6655–6662 (1995)

    Article  ADS  Google Scholar 

  • Huybrechts, W.J.: Note on the ground-state energy of the Feynman polaron model. J. Phys. C: Solid State Phys. 9, L211–L212 (1976)

    Article  ADS  Google Scholar 

  • Ioffe, L.B., Geshkenbein, V.B., Feigelman, M.V., Fauchere, A.L., Blatter, G.: Quiet SDS Josephson junctions for quantum computing. arXiv preprint cond-mat/9809116 (1998)

  • Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)

    Article  ADS  Google Scholar 

  • Kartheuser, E.: Chap 1: The Standard theories. In: Devreese, J.T. (ed.) Polarons in Ionic Crystals and Polar Semiconductors. Springer, Amsterdam (1972)

    Google Scholar 

  • Khordad, R., Sedehi, H.R.: Application of different entropy formalisms in a neural network for novel word learning. Eur. Phys. J. Plus 130(12), 246–253 (2015)

    Article  Google Scholar 

  • Khordad, R., Sedehi, H.R.: Application of different entropies to study of bound magnetopolaron in an asymmetric quantum dot. Ind. J. Phys. 91(7), 825–831 (2017)

    Article  Google Scholar 

  • Landauer, R.: Is quantum mechanically coherent computation useful? In: Feng, D.H., Hu, B.-L. (eds.) Proceedings of the Drexel-4 Symposium on Quantum Nonintegrability—Quantum Classical Correspondence, Philadelphia PA, 8 September 1994. International Press, Boston (1997)

  • Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120–126 (1998)

    Article  ADS  Google Scholar 

  • Makhlin, Y., Schön, G., Shnirman, A.: Josephson-junction qubits with controlled couplings. arXiv preprint cond-mat/9808067 (1998)

  • Manije, S.T., Gholamreza, M.B., Mohammad, A.: Conditional Tsallis entropy. Cybern. Inf. Technol. 13(2), 37–42 (2013)

    MathSciNet  Google Scholar 

  • Massimo Palma, D., Suominen, K.A., Ekert, A.: Quantum Computation and Dissipation. Oxford University, Oxford (1995)

    MATH  Google Scholar 

  • Maszczyk, T., Duch, W.: Comparison of Shannon, Renyi and Tsallis entropy used in decision trees. In: Artificial Intelligence and Soft Computing—ICAISC 2008, pp. 643–651 (2008)

  • Muhonen, J.T., Dehollain, J.P., Laucht, A., Hudson, F.E., Kalra, R., Sekiguchi, T., Itoh, K.M., Jamieson, D.N., McCallum, J.C., Dzurak, A.S., Morello, A.: Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9(12), 986–991 (2014)

    Article  ADS  Google Scholar 

  • Muhonen, J.T., Laucht, A., Simmons, S., Dehollain, J.P., Kalra, R., Hudson, F.E., Freer, S., Itoh, K.M., Jamieson, D.N., McCallum, J.C., Dzurak, A.S.: Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. J. Phys.: Condens. Matter 27(15), 154205–154210 (2015)

    ADS  Google Scholar 

  • Murakami, M., Ford, G.W., O’Connell, R.F.: Decoherence in phase space. Laser Phys. 13(2), 180–183 (2003)

    Google Scholar 

  • Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000)

    Article  ADS  Google Scholar 

  • Nakamura, Y., Pashkin, Y.A., Tsai, J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. arXiv preprint cond-mat/9904003 (1999)

  • O’Connell, R.F.: Decoherence in nanostructures and quantum systems. Physica E 19, 77–82 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Ratchov, A., Faure, F., Hekking, F.W.J.: Loss of quantum coherence in a system coupled to a zero-temperature environment. Eur. Phys. J. B 46(2), 519–528 (2005)

    Article  ADS  Google Scholar 

  • Renyi, A.: On measures of entropy and information. In: Proceeding of Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. I, pp. 547–561. University of California Press, Berkeley (1961)

  • Rényi, A.: On the foundations of information theory. Revue de l’Institut International de Statistique 33(1), 1–14 (1965)

    Article  MathSciNet  Google Scholar 

  • Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(1), 379–423 and 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  • Sneddon, R.: The Tsallis entropy of natural information. Physica A 386(1), 101–118 (2007)

    Article  ADS  Google Scholar 

  • Susan, S., Hanmandlu, M.: A non-extensive entropy feature and its application to texture classification. Neurocomputing 120, 214–225 (2013)

    Article  Google Scholar 

  • Susan, S., Sharma, M.: Automatic texture defect detection using Gaussian mixture entropy modeling. Neurocomputing 239, 232–237 (2017)

    Article  Google Scholar 

  • Tiotsop, M., Fotue, A.J., Kenfack, S.C., Fotsin, H.B., Fai, L.C.: The effect of the electromagnetic field and Coulomb impurity on polaron in RbCl triangular quantum dot qubit. Ind. J. Phys. 90(9), 1049–1054 (2016)

    Article  Google Scholar 

  • Tiotsop, M., Fotue, A.J., Fotsin, H.B., Fai, L.C.: Tsallis entropy and decoherence of CsI quantum pseudo dot qubit. Superlattices Microstruct. 105, 163–171 (2017a)

    Article  ADS  Google Scholar 

  • Tiotsop, M., Fotue, A.J., Fautso, G.K., Kenfack, C.S., Fotsin, H.B., Fai, L.C.: Decoherence time, hydrogenic-like impurity effect and Shannon entropy on polaron in RbCl triangular quantum dot qubit. Superlattices Microstruct. 103, 70–77 (2017b)

    Article  ADS  Google Scholar 

  • Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52(1), 479–487 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H.J.K.H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710–4713 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  • Unruh, W.G.: Maintaining coherence in quantum computers. Phys. Rev. A 51(2), 992–997 (1995)

    Article  ADS  Google Scholar 

  • Zumbühl, D.M.: Coherence and spin in GaAs quantum dots. Doctoral dissertation, Harvard University (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tiotsop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiotsop, M., Fotue, A.J., Fotsin, H.B. et al. Application of entropies to the study of the decoherence of magnetopolaron in 0-D nanosystem. Opt Quant Electron 50, 365 (2018). https://doi.org/10.1007/s11082-018-1630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1630-x

Keywords

Navigation