Skip to main content
Log in

Analytical treatments of the space–time fractional coupled nonlinear Schrödinger equations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Under investigation in this work is a (\(2+1\))-dimensional the space–time fractional coupled nonlinear Schrödinger equations, which describes the amplitudes of circularly-polarized waves in a nonlinear optical fiber. With the aid of conformable fractional derivative and the fractional wave transformation, we derive the analytical soliton solutions in the form of rational soliton, periodic soliton, hyperbolic soliton solutions by four integration method, namely, the extended trial equation method, the \(\exp (-\,\Omega (\eta ))\)-expansion method and the improved \(\tan (\phi (\eta )/2)\)-expansion method and semi-inverse variational principle method. Based on the the extended trial equation method, we derive the several types of solutions including singular, kink-singular, bright, solitary wave, compacton and elliptic function solutions. Under certain condition, the 1-soliton, bright, singular solutions are driven by semi-inverse variational principle method. Based on the analytical methods, we find that the solutions give birth to the dark solitons, the bright solitons, combine dark-singular, kink, kink-singular solutions with fractional order for nonlinear fractional partial differential equations arise in nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  • Abdelrahman, M.A.E., Zahran, E.H.M., Khater, M.M.A.: Exact traveling wave solutions for power law and Kerr law non linearity using the \(\exp (-\varphi (\xi ))\)-expansion method. Glob. J. Sci. Front. Res. 14, 53–60 (2014)

    Google Scholar 

  • Baskonus, H.M.: New acoustic wave behaviors to the Davey–Stewartson equation with power-law nonlinearity arising in fluid dynamics. Nonlinear Dyn. 86, 177–183 (2016)

    Article  MathSciNet  Google Scholar 

  • Baskonus, H.M.: New complex and hyperbolic function solutions to the generalized double combined Sinh-Cosh-Gordon equation. AIP Conf. Proc. 1798, 020018 (2017). https://doi.org/10.1063/1.4972610

  • Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics. Waves Random Complex Media 26, 201–208 (2016)

    MathSciNet  MATH  Google Scholar 

  • Baskonus, H.M., Bulut, H.: New wave behaviors of the system of equations for the ion sound and Langmuir Waves. Waves Random Complex Media 26(4), 613–625 (2016). https://doi.org/10.1080/17455030.2016.1181811

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baskonus, H.M., Koç, D.A., Bulut, H.: New travelling wave prototypes to the nonlinear Zakharov–Kuznetsov equation with power law nonlinearity. Nonlinear Sci. Lett. A 7, 67–76 (2016)

    Google Scholar 

  • Baskonus, H.M., Bulut, H., Atangana, A.: On the complex and hyperbolic structures of longitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 25, 035022 (2016). https://doi.org/10.1088/0964-1726/25/3/035022

  • Boyd, R.W.: Nonlinear Optics. Academic, San Diego (1992)

    Google Scholar 

  • Bulut, H., Baskonus, H.M.: New complex hyperbolic function solutions for the (2+1)-dimensional dispersive long water-wave system. Math. Comput. Appl. 21, 6 (2016). https://doi.org/10.3390/mca21020006

  • Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)

    Article  MathSciNet  Google Scholar 

  • Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Zhou, Q., Triki, H., Zaka Ullah, M., Moshokoa, S.P., Biswas, A.: Optical solitons in birefringent fibers with Kerr nonlinearity by exp-function method. Opt. Int. J. Light Electron Opt. 131, 964–976 (2017)

    Article  Google Scholar 

  • Ekici, M., Zhou, Q., Sonmezoglu, A., Manafian, J., Mirzazadeh, M.: The analytical study of solitons to the nonlinear Schrödinger equation with resonant nonlinearity. Opt. Int. J. Electron Opt. 130, 378–382 (2017)

    Article  Google Scholar 

  • Esen, A., Sulaimanb, T.A., Bulut, H., Baskonuse, H.M.: Optical solitons to the space-time fractional (\(1+1\))-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)

    Article  ADS  Google Scholar 

  • Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  Google Scholar 

  • Foroutan, M.R., Manafian, J., Ranjbaran, A.: Lump solution and its interaction to (3+1)-D potential-YTSF equation. Nonlinear Dyn. 92(4), 2077–2092 (2018)

    Article  Google Scholar 

  • Guo, Q., He, X.: Least energy solutions for a weakly coupled fractional Schrödinger system. Nonlinear Anal. 132, 141–159 (2016)

    Article  MathSciNet  Google Scholar 

  • Hafez, M.G., Nur Alam, M., Akbar, M.A.: Application of the \(\exp (-\Omega (\xi ))\)-expansion method to find exact solutions for the solitary wave equation in an unmagnatized dusty plasma. World Appl. Sci. J. 32(10), 2150–2155 (2014)

    Google Scholar 

  • Hafez, M.G., Alam, M.N., Akbar, M.A.: Travelling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J. King Saud Univ. Sci. 27(15), 105–112 (2015)

    Article  Google Scholar 

  • He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Modern Phys. B. 20, 1141–1199 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Inc, M., Kilic, B., Baleanu, D.: Optical soliton solutions of the pulse propagation generalized equation in parabolic-law media with space-modulated coefficients. Optics 127, 1056–1058 (2016)

    ADS  Google Scholar 

  • Khalil, R., Al-Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  • Khan, K., Akbar, M.A.: The \(\exp (-\Phi (\xi ))\)-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation. Int. J. Dyn. Syst. Differ. Eq. 5(1), 72–83 (2014)

    MATH  Google Scholar 

  • Kohl, R., Milovic, D., Zerrad, E., Biswas, A.: Optical solitons by He’s variational principle in a non-Kerr law media. J. Infrared Millim. Terahertz Waves 30(5), 526–537 (2009)

    Article  Google Scholar 

  • Manafian, J.: On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus 130, 1–20 (2015)

    Article  Google Scholar 

  • Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(tan(\phi /2)\)-expansion method. Optik 127, 4222–4245 (2016)

    Article  ADS  Google Scholar 

  • Manafian, J.: Application of the ITEM for the system of equations for the ion sound and Langmuir waves. Opt. Quant. Elec. 49(17), 1–26 (2017)

    Google Scholar 

  • Manafian, J.: Novel solitary wave solutions for the (\(3+1\))-dimensional extended Jimbo–Miwa equations. Comput. Math. Appl. 76, 1246–1260 (2018). (accepted)

    Article  MathSciNet  Google Scholar 

  • Manafian, J., Lakestani, M.: Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the \(G^{\prime }/G\)-expansion method. Pramana J. Phys. 130, 31–52 (2015)

    Article  ADS  Google Scholar 

  • Manafian, J., Lakestani, M.: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130, 1–12 (2015)

    Article  Google Scholar 

  • Manafian, J., Lakestani, M.: Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Opt. Quant. Elec. 48, 1–32 (2016)

    Article  Google Scholar 

  • Manafian, J., Lakestani, M.: Abundant soliton solutions for the Kundu-Eckhaus equation via \(tan(\phi /2)\)-expansion method. Opt. Int. J. Electron Opt. 127, 5543–5551 (2016)

    Article  Google Scholar 

  • Manafian, J., Lakestani, M.: A new analytical approach to solve some the fractional-order partial differential equations. Indian J. Phys. 91, 243–258 (2017)

    Article  ADS  Google Scholar 

  • Manafian, J., Lakestani, M., Bekir, A.: Application of a new analytical method for the Richards’ equation, based on the Brooks and Corey model. J. Porous Media 19(11), 975–991 (2016)

    Article  Google Scholar 

  • Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Willey, New York (1993)

    MATH  Google Scholar 

  • Mirzazadeh, M., Eslami, M.: Exact multisoliton solutions of nonlinear Klein-Gordon equation in \(1+2\) dimensions. Eur. Phys. J. Plus 128, 1–9 (2015)

    Google Scholar 

  • Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Ortakaya, S., Eslami, M., Biswas, A.: Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics. Eur. Phys. J. Plus 131(166), 1–11 (2016)

    Google Scholar 

  • Mvogoa, A., Ben-Bolie, G.H., Kofané, T.C.: Coupled fractional nonlinear differential equations and exact Jacobian elliptic solutions for exciton-phonon dynamics. Phys. Lett. A 378, 2509–2517 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, vol. 198, pp. 1–340. Academic Press (1999)

  • Rana, Y.H., Wang, J.G., Wang, D.L.: On HSS-like iteratio nmethod for the space fractional coupled nonlinear Schrödingere quations. Appl. Math. Comput. 271, 482–488 (2015)

    MathSciNet  Google Scholar 

  • Rayhanul Islam, S.M., Khan, K., Akbar, M.A.: Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations. Springer Plus 4(124), 1–11 (2015)

    Google Scholar 

  • Sindi, C.T., Manafian, J.: Wave solutions for variants of the KdV-Burger and the K(n, n)-Burger equations by the generalized \(G^{\prime }/G\)-expansion method. Math. Methods Appl. Sci. 87, 1–14 (2016)

    MATH  Google Scholar 

  • Su, J.J., Gao, Y.T.: Dark solitons for a system of the (\(2+1\))-dimensional coupled nonlinear Schrödinger equations with time-dependent coeffcients in optical fibers. Superlattices Microstruct. 112, 20–29 (2017)

    Article  ADS  Google Scholar 

  • Tchier, F., Yusuf, A., Aliyu, A.I., Inc, M.: Soliton solutions and conservation laws for lossy nonlinear transmission line equation. Superlattices Microstruct. 107, 320–336 (2017)

    Article  ADS  Google Scholar 

  • Yel, G., Baskonus, H.M., Bulut, H.: Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method. Opt. Quant. Electron. 49(285), 1–10 (2017)

    Google Scholar 

  • Zhang, J.: Variational approach to solitary wave solution of the generalized Zakharov equation. Comput. Math. Appl. 54, 1043–1046 (2007)

    Article  MathSciNet  Google Scholar 

  • Zhou, Q.: Optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Waves Random Complex Media 25, 52–59 (2016)

    Article  ADS  Google Scholar 

  • Zhou, Q., Ekici, M., Sonmezoglu, A., Manafian, J., Khaleghizadeh, S., Mirzazadeh, M.: Exact solitary wave solutions to the generalized Fisher equation. Opt. Int. J. Light Electron Opt. 127, 12085–12092 (2016)

    Article  Google Scholar 

  • Zinati, R.F., Manafian, J.: Applications of He’s semi-inverse method, ITEM and GGM to the Davey–Stewartson equation. Eur. Phys. J. Plus 132, 1–26 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is published as part of a research project supported by the University of Tabriz Research Affairs Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Manafian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakestani, M., Manafian, J. Analytical treatments of the space–time fractional coupled nonlinear Schrödinger equations. Opt Quant Electron 50, 396 (2018). https://doi.org/10.1007/s11082-018-1615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1615-9

Keywords

Navigation