Skip to main content
Log in

Theoretical investigation of hot electron cooling process in GaAs/AlAs cylindrical quantum wire under the influence of an intense electromagnetic wave

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Hot electrons cooling by phonons in GaAs/AlAs cylindrical quantum wire (CQW), under the influence of an intense electromagnetic wave (EMW), is studied theoretically. Analytic expression for the electron cooling power (CP) is derived from the quantum transport equation for phonons, using the Hamiltonian of interacting electron–optical phonon system. Both photon absorption and emission processes are considered. Numerical results show that the CP reaches maximum when the energy difference between electronic subbands equals the energy of an optical phonon plus the photon energy. Under the influence of the EMW, the negative CP is observed showing that electrons gain energy from phonon and photon instead of losing their energy. Also, the CP increases with increasing the EMW amplitude. Our results theoretically clarify the mechanism of the electron cooling process by phonons in the GaAs/AlAs CQW under the EMW, which is of significance for designing and fabricating high-speed nanoelectronic devices based on this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balkan, N. (ed.): Hot Electrons in Semiconductors: Physics and Devices. Oxford University Press, Oxford (1998)

    Google Scholar 

  • Bau, N.Q., Phong, T.C.: Calculations of the absorption coefficient of a weak electromagnetic wave by free carriers in quantum wells by the Kubo–Mori method. J. Phys. Soc. Jpn. 67, 3875–3880 (1998)

    Article  ADS  Google Scholar 

  • Betz, A.C.: Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805–056809 (2012)

    Article  ADS  Google Scholar 

  • Bhargavi, K.S., Kubakaddi, S.S.: High field transport properties of a bilayer graphene. Physica E 56, 123–129 (2014)

    Article  ADS  Google Scholar 

  • Bhargavi, K.S., Kubakaddi, S.S.: Electron cooling in three-dimensional Dirac fermion systems at low temperature: effect of screening. Phys. Status Solidi Rapid Res. Lett. 10, 248–252 (2016)

    Article  ADS  Google Scholar 

  • Butler, S.Z.: Progress challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013)

    Article  Google Scholar 

  • Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  • Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

    Article  ADS  Google Scholar 

  • Fletcher, R., Pudalov, V.M., Feng, Y., Tsaousidou, M., Butcher, P.N.: Thermoelectric and hot-electron properties of a silicon inversion layer. Phys. Rev. B 56, 12422–12428 (1997)

    Article  ADS  Google Scholar 

  • Gaška, R., Mickevičius, R., Mitin, V., Grubin, H.L.: Hot-electron overcooling and intersubband population inversion in quantum wires. Semicond. Sci. Technol. 9, 886–888 (1994)

    Article  ADS  Google Scholar 

  • Gaška, R., Mickevičius, R., Mitin, V., Stroscio, M.A., Iafrate, G.J., Grubin, H.L.: Hotelectron relaxation dynamics in quantum wires. J. Appl. Phys. 76, 1021–1028 (1994)

    Article  ADS  Google Scholar 

  • Gupta, A., Sakthivel, T., Seal, S.: Recent development in 2D materials beyond graphene. Prog. Mater. Sci 73, 44–126 (2015)

    Article  Google Scholar 

  • Hoi, B.D., Phuong, L.T.T., Phong, T.C.: Magneto-optical absorption and cyclotron–phonon resonance in graphene monolayer. J. Appl. Phys. 123, 094303 (2018)

    Article  ADS  Google Scholar 

  • Iacopi, F., Boeckl, J.J., Jagadish, C. (ed.): Book Series: Semiconductors and Semimetals, 2D Materials, 95, 2–340 (2016)

  • Kaasbjerg, K., Bhargavi, K.S., Kubakaddi, S.S.: Hot-electron cooling by acoustic and optical phonons in monolayers of MoS\(_2\) and other transition-metal dichalcogenides. Phys. Rev. B 90, 165436 (2014)

    Article  ADS  Google Scholar 

  • Kang, N.L., Lee, Y.J., Choi, S.D.: Derivation of the DC conductivity in a quantum well by using an operator algebra technique. J. Korean Phys. Soc. 44, 1535–1541 (2004)

    Google Scholar 

  • Kubakaddi, S.S.: Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys. Rev. B 79, 075417-1–075417-6 (2009)

    Article  ADS  Google Scholar 

  • Kubakaddi, S.S.: Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals. J. Appl. Phys. 119, 195701 (2016)

    Article  ADS  Google Scholar 

  • Kubakaddi, S.S.: The role of vector potential coupling in hot electron cooling power in bilayer graphene at low temperature. Physica E 95, 144–148 (2018)

    Article  ADS  Google Scholar 

  • Kubakaddi, S.S., Suresha, K., Mulimani, B.G.: Energy loss rate of two-dimensional electron gas in GaInAs/AlInAs, InSb/AlInSb and GaSb/AlGaAsSb heterostructures. Physica E 18, 475–484 (2003)

    Article  ADS  Google Scholar 

  • Lee, S.-C., Galbraith, I., Pidgeon, C.R.: Influence of electron temperature and carrier concentration on electron-LO-phonon intersubband scattering in wide GaAs/Al\(_x\)Ga\(_{1-x}\)As quantum wells. Phys. Rev. B 52, 1874–1881 (1995)

    Article  ADS  Google Scholar 

  • Ma, Y., Fletcher, R., Zaremba, E., D’lorio, M., Foxon, C.T., Harris, J.J.: Energy-loss rates of two-dimensional electrons at a GaAs/Al\(_x\)Ga\(_{1-x}\)As interface. Phys. Rev. B 43, 9033–9044 (1991)

    Article  ADS  Google Scholar 

  • Masale, M., Constantinou, N.C.: ElectronLO-phonon scattering rates in a cylindrical quantum wire with an axial magnetic field: analytic results. Phys. Rev. B 48, 11128–11134 (1993)

    Article  ADS  Google Scholar 

  • Mitin, V.V., Gaška, R., Mickevičius, R.: Ultrafast relaxation of hot electrons in quantum wires. In: Proceedings of SPIE 2142, Ultrafast Phenomena in Semiconductors, 69 (May 6, 1994), https://doi.org/10.1117/12.175911

  • Mori, N., Ando, T.: Magnetophonon resonance in monolayer graphene. J. Phys. Soc. Jpn. 80, 044706 (2011)

    Article  ADS  Google Scholar 

  • Nguyen, C.V.: Magneto-optical transport properties of monolayer MoS2 on polar substrates. Phys. Rev. B 96, 125411 (2017)

    Article  ADS  Google Scholar 

  • Qu, S.-X., Cleland, A.N., Geller, M.R.: Hot electrons in low-dimensional phonon systems. Phys. Rev. B 72, 224301-1–224301-7 (2005)

    Article  ADS  Google Scholar 

  • Sangwan, V.K., Hersam, M.C.: Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018)

    Article  ADS  Google Scholar 

  • Shadrin, V.D., Kistenev, F.E., Serzhenko, F.L.: Influence of quantum wire electron confinement on intrasubband polaroptical scattering rates. J. Appl. Phys. 75, 985–988 (1994)

    Article  ADS  Google Scholar 

  • Sippel, P.: Femtosecond cooling of hot electrons in CdSe quantum-well platelets. Nano Lett. 15, 2409–2416 (2015)

    Article  ADS  Google Scholar 

  • Smith, H., Jensen, H.H.: Transport Phenomena. Oxford University Press, Oxford (1989)

    Google Scholar 

  • Stange, A., Sohrt, C., Yang, L.X., Rohde, G., Janssen, K., Hein, P., Oloff, L.-P., Hanff, K., Rossnagel, K., Bauer, M.: Hot electron cooling in graphite: supercollision versus hot phonon decay. Phys. Rev. B 92, 184303 (2015)

    Article  ADS  Google Scholar 

  • Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  • Wang, X.F., Lei, X.L.: Polar-optic phonons and high-field electron transport in cylindrical GaAs/AlAs quantum wires. Phys. Rev. B 49(7), 4780–4789 (1994)

    Article  ADS  Google Scholar 

  • Xu, W.: Emission of acoustic and optical phonons by hot electrons in a two-dimensional electron system in parallel magnetic fields. Phys. Rev. B 54, 2775–2784 (1996)

    Article  ADS  Google Scholar 

  • Xu, W., Dong, H.M., Li, L.L., Yao, J.Q., Vasilopoulos, P., Peeters, F.M.: Optoelectronic properties of graphene in the presence of optical phonon scattering. Phys. Rev. B 82, 125304–125309 (2010)

    Article  ADS  Google Scholar 

  • Yarmohammadi, M.: Strain effects on the optical conductivity of gapped graphene in the presence of Holstein phonons beyond the Dirac cone approximation. AIP Adv. 6(8), 085008 (2016)

    Article  ADS  Google Scholar 

  • Yarmohammadi, M.: Thermodynamic properties of gapped graphene in the presence of a transverse magnetic field by considering holstein phonons. J. Electron. Matter. 46(2), 747–757 (2017a)

    Article  ADS  Google Scholar 

  • Yarmohammadi, M.: The electronic properties, electronic heat capacity and magnetic susceptibility of monolayer boron nitride graphene-like structure in the presence of electron–phonon coupling. Solid State Commun. 253, 57–62 (2017b)

    Article  ADS  Google Scholar 

  • Yarmohammadi, M., Mirabbaszadeh, K., Shirzadi, B.: The effects of Rashba spinorbit coupling and Holstein phonons on thermodynamic properties of BN-doped graphene. Int. J. Mod. Phys. B 31(8), 1750045 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le T. T. Phuong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, K.D., Nguyen, C.V., Hieu, N.N. et al. Theoretical investigation of hot electron cooling process in GaAs/AlAs cylindrical quantum wire under the influence of an intense electromagnetic wave. Opt Quant Electron 50, 342 (2018). https://doi.org/10.1007/s11082-018-1606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1606-x

Keywords

Navigation