Skip to main content
Log in

High-Q and temperature stable photonic biosensor based on grating waveguides

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, analytical modeling and parameter evaluation of a photonic biosensor using cascaded silicon grating waveguides is illustrated. The sensor design consists of two cascaded waveguides with symmetric sidewall gratings to broaden the stop band region of the transmission spectra. In the work, the structure is first analyzed using the transfer matrix method. The parameter values are then optimized to obtain a sharper resonant peak in the center of the stop band. Notably, the resonant band of this structure provides a high Q factor (of 1.544 × 105), which significantly improves the limits of detection. The sensor has been designed to detect the presence of biomaterial material (seen corresponding to a change in refractive index) on its surface by changing the change in device resonant wavelength. In this study, the effect of temperature on the detection of such biomaterials has also been evaluated, as has the temperature sensitivity of the device which is − 0.0075 nm/°C, over a temperature range of 18–34 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4: a
Fig. 5: a
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azzam, S.I., Hameed, M.F.O., Shehata, R.E.A., Heikal, A.M., Obayya, S.S.A.: Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quantum Electron. 48, 1–11 (2016). https://doi.org/10.1007/s11082-016-0414-4

    Article  Google Scholar 

  • Bashkatov, A.N., Genina, E.A.: Water refractive index in dependence on temperature and wavelength: a simple approximation. In: Proceedings of SPIE 5068, Saratov Fall Meeting 2002 Optical Technologies in Biophysics and Medicine IV, 393 (October 14, 2003), vol. 5068, pp. 393–395 (2003). https://doi.org/10.1117/12.518857

  • Boyd, R.W., Heebner, J.E.: Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001). https://doi.org/10.1364/AO.40.005742

    Article  ADS  Google Scholar 

  • Chen, Z., Flueckiger, J., Wang, X., Zhang, F., Yun, H., Lu, Z., Caverley, M., Wang, Y., Jaeger, N.A.F., Chrostowski, L.: Spiral Bragg grating waveguides for TM mode silicon photonics. Opt. Express 23, 25295–25307 (2015). https://doi.org/10.1364/OE.23.025295

    Article  ADS  Google Scholar 

  • Chiu, M.-H., Wang, S.-F., Chang, R.-S.: D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry. Opt. Lett. 30, 233–235 (2005). https://doi.org/10.1364/OL.30.000233

    Article  ADS  Google Scholar 

  • Chrostowski, L., Hochberg, M.: Silicon Photonics Design. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  • Derbali, J., AbdelMalek, F., Obayya, S.S.A., Bouchriha, H., Letizia, R.: Design of a compact photonic crystal sensor. Opt. Quantum Electron. 42, 463–472 (2011)

    Article  Google Scholar 

  • Dutta, H.S., Pal, S.: Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt. Quantum Electron. 45, 907–917 (2013). https://doi.org/10.1007/s11082-013-9697-x

    Article  Google Scholar 

  • Estevez, M.C., Alvarez, M., Lechuga, L.M.: Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6, 463–487 (2012). https://doi.org/10.1002/lpor.201100025

    Article  ADS  Google Scholar 

  • Fan, X., White, I.M., Shopova, S.I., Zhu, H., Suter, J.D., Sun, Y.: Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620, 8–26 (2008). https://doi.org/10.1016/j.aca.2008.05.022

    Article  Google Scholar 

  • Fard, S.T., Grist, S.M., Donzella, V., Schmidt, S.A., Flueckiger, J., Wang, X., Shi, W., Millspaugh, A., Webb, M., Ratner, D.M., Cheung, K.C., Chrostowski, L.: Label-free silicon photonic biosensors for use in clinical diagnostics. In: Proc. SPIE 8629, Silicon Photonics VIII, 862909 (2013). https://doi.org/10.1117/12.2005832

  • Gonzalo Wangüemert-Pérez, J., Cheben, P., Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., Molina-Fernández, I., Xu, D.-X., Schmid, J.H.: Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Opt. Lett. 39, 4442–4445 (2014). https://doi.org/10.1364/OL.39.004442

    Article  ADS  Google Scholar 

  • Guider, R., Gandolfi, D., Chalyan, T., Pasquardini, L., Samusenko, A., Pucker, G., Pederzolli, C., Pavesi, L.: Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection. Sensors (Switzerland) 15, 17300–17312 (2015). https://doi.org/10.3390/s150717300

    Article  Google Scholar 

  • Liu, Q., Tu, X., Kim, K.W., Kee, J.S., Shin, Y., Han, K., Yoon, Y.J., Lo, G.Q., Park, M.K.: Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B Chem. 188, 681–688 (2013). https://doi.org/10.1016/j.snb.2013.07.053

    Article  Google Scholar 

  • Mohanty, G., Sahoo, B.K., Akhtar, J.: Comparative analysis for reflectivity of graphene based SPR biosensor. Opt. Quantum Electron. 47, 1911–1918 (2015). https://doi.org/10.1007/s11082-014-0057-2

    Article  Google Scholar 

  • Najafgholinezhad, S., Olyaee, S.: A photonic crystal biosensor with temperature dependency investigation of micro-cavity resonator. Optik (Stuttg) 125, 6562–6565 (2014). https://doi.org/10.1016/j.ijleo.2014.08.043

    Article  ADS  Google Scholar 

  • Ni, B., Chen, X.Y., Xiong, D.Y., Liu, H., Hua, G.H., Chang, J.H., Zhang, J.H., Zhou, H.: Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt. Quantum Electron. 47, 1339–1346 (2015). https://doi.org/10.1007/s11082-014-0059-0

    Article  Google Scholar 

  • Prabhathan, P., Murukeshan, V.M.: Silicon waveguide multiplexed sensor array configuration for label-free biosensing applications. J. Indian Inst. Sci. 94, 273–282 (2014)

    Google Scholar 

  • Prabhathan, P., Murukeshan, V.M., Jing, Z., Ramana, P.V.: Compact SOI nanowire refractive index sensor using phase shifted Bragg grating. Opt. Express 17, 15330–15341 (2009). https://doi.org/10.1364/OE.17.015330

    Article  ADS  Google Scholar 

  • Sahu, S., Singh, G.: Modeling of grating slot waveguide for high-Q based refractive index sensor. In: 2017 International Conference on Computer, Communications and Electronics (Comptelix), pp. 394–396. IEEE (2017)

  • Sahu, S., Kozadaev, K.V., Singh, G.: Michelson interferometer based refractive index biosensor. In: 13th International Conference on Fiber Optics and Photonics. p. Th3A.60. OSA, Washington, DC (2016)

  • Sahu, S., Ali, J., Singh, G.: Refractive index biosensor using sidewall gratings in dual-slot waveguide. Opt. Commun. 402, 408–412 (2017). https://doi.org/10.1016/j.optcom.2017.06.051

    Article  ADS  Google Scholar 

  • Wang, X., Flueckiger, J., Schmidt, S., Grist, S., Fard, S.T., Kirk, J., Doerfler, M., Cheung, K.C., Ratner, D.M., Chrostowski, L.: A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide. J. Biophotonics 6, 821–828 (2013a). https://doi.org/10.1002/jbio.201300012

    Article  Google Scholar 

  • Wang, X., Grist, S., Flueckiger, J., Jaeger, N.A.F., Chrostowski, L.: Silicon photonic slot waveguide Bragg gratings and resonators. Opt. Express 21, 19029–19039 (2013b). https://doi.org/10.1364/OE.21.019029

    Article  ADS  Google Scholar 

  • Wang, Y., Wang, X., Flueckiger, J., Yun, H., Shi, W., Bojko, R., Jaeger, N.A.F., Chrostowski, L.: Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. Opt. Express 22, 20652 (2014). https://doi.org/10.1364/OE.22.020652

    Article  ADS  Google Scholar 

  • Zinoviev, K., Carrascosa, L.G., Del Río, J.S., Sepúlveda, B., Domínguez, C., Lechuga, L.M.: Silicon photonic biosensors for lab-on-a-chip applications. Adv. Opt. Technol. (2008). https://doi.org/10.1155/2008/383927

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the mutual understanding for joint and collaborative work among researchers from Malaviya National Institute of Technology Jaipur (INDIA), Universiti Teknologi Malaysia, Johor Bahru, (MALAYSIA) and the Ton Duc Thang University, Ho Chi Minh City (VIETNAM). The support of the Royal Academy of Engineering and the George Daniels Educational Trust is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourabh Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Ali, J., Yupapin, P.P. et al. High-Q and temperature stable photonic biosensor based on grating waveguides. Opt Quant Electron 50, 307 (2018). https://doi.org/10.1007/s11082-018-1578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1578-x

Keywords

Navigation