Skip to main content
Log in

Electron states, effective masses and transverse effective charge of InAs quantum dots

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The electron energy levels, direct energy band gaps, electron and hole effective masses as well as the transverse effective charge of InAs spherically shaped quantum dots have been studied as a function of the quantum dot radius considered as varying from 1 to 10 nm. The direct energy band-gap as well as the electron and heavy hole effective masses decrease non-linearly with increasing the quantum dot radius. Nevertheless, the transverse effective charge is found to increase with increasing the quantum dot radius. It is concluded that the quantum confinement has a strong influence on all the studied physical quantities for quantum dot radius below 6 nm. The results of the present contribution show that more opportunities can be offered to tailor desired optoelectronic properties surpassing those presented by bulk InAs materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi, S.: Properties of Group-IV, III–V and II–VI Semiconductors. Wiley, Chichester (2005)

    Book  Google Scholar 

  • Al Shahry, H., Bouarissa, N., Ajmal Khan, M.: Exciton and polaron properties in GaxIn1−xAs ternary mixed crystals. J Luminescence 131, 2153–2159 (2011)

    Article  ADS  Google Scholar 

  • Bouarissa, N.: Effects of compositional disorder upon electronic and lattice properties of GaxIn1−xAs. Phys. Lett. A 245, 285–291 (1998)

    Article  ADS  Google Scholar 

  • Bouarissa, N.: Optoelectronic properties of InAs1−xPx semiconducting alloys. Mater. Sci. Eng. B 86, 53–59 (2001)

    Article  Google Scholar 

  • Bouarissa, N.: Effective masses of electrons, heavy holes and positrons in quasi-binary (GaSb)1−x(InAs)x crystals. J. Phys. Chem. Solids 67, 1440–1443 (2006)

    Article  ADS  Google Scholar 

  • Bouarissa, N.: Phonons and related crystal properties in indium phosphide under pressure. Phys. B 406, 2583–2587 (2011)

    Article  ADS  Google Scholar 

  • Bouarissa, N.: Phonon confinement in nanostructured InP. J. Comput. Theor. Nanosci. 10, 1284–1289 (2013)

    Article  Google Scholar 

  • Bouarissa, N., Kassali, K.: Mechanical properties and elastic constants of zincblende Ga1−xInxN Alloys. Phys. Stat. Sol. (b) 228, 663–670 (2001)

    Article  ADS  Google Scholar 

  • Bouarissa, N., Bougouffa, S., Kamli, A.: Energy gaps and optical phonon frequencies in InP1−xSbx. Semicond. Sci. Technol. 20, 265–270 (2005)

    Article  ADS  Google Scholar 

  • Brus, L.: Zero-dimensional “excitons” in semiconductor clusters. IEEE J. Quantum Electron. 22, 1909–1914 (1986)

    Article  ADS  Google Scholar 

  • Capasso, F., Faist, J., Sirtori, C., Cho, A.Y.: Infrared (4–11 μm) quantum cascade lasers. Solid State Commun. 102, 231–236 (1997)

    Article  ADS  Google Scholar 

  • Deng, H.-X., Li, S.-S., Li, J., Wei, S.-H.: Effect of hydrogen passivation on the electronic structure of ionic semiconductor nanostructures. Phys. Rev. B 85(195328), 1–5 (2012)

    Google Scholar 

  • Driad, R., Lu, Z.H., Charbonneau, S., McKinnon, W.R., Laframboise, S., Poole, P.J., McAlister, S.P.: Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment. Appl. Phys. Lett. 73, 665–667 (1998)

    Article  ADS  Google Scholar 

  • El Wadiy, N.H.M., Bouarissa, N., Khan, M.A.: Quantum confinement effects on the band structure and dielectric properties of nanostructured GaAs. Phys. Scr. 84(015704), 1–5 (2011)

    Google Scholar 

  • Gueddim, A., Bouarissa, N.: Electronic structure and optical properties of dilute InAs1−xNx: pseudopotential calculations. Phys. Scr. 80(015701), 1–7 (2009)

    Google Scholar 

  • Gueddim, A., Zerdoum, R., Bouarissa, N.: Dependence of electronic properties on nitrogen concentration in GaAs1−xNx dilute alloys. J. Phys. Chem. Solids 67, 1618–1622 (2006)

    Article  ADS  Google Scholar 

  • Gueddim, A., Zerdoum, R., Bouarissa, N.: Alloy composition and optoelectronic properties of dilute GaSb1−xNx by pseudo-potential calculations. Phys. B 389, 335–342 (2007)

    Article  ADS  Google Scholar 

  • Gueddim, A., Eloud, T., Messikine, N., Bouarissa, N.: Energy levels and optical properties of GaN spherical quantum dots. Superlattices Microstruct. 77, 124–133 (2015)

    Article  ADS  Google Scholar 

  • Hafaiedh, A., Bouarissa, N.: Quantum confinement effects on energy gaps and electron and hole effective masses of quantum well AlN. Physica E 43, 1638–1641 (2011)

    Article  ADS  Google Scholar 

  • Harrison, P.: antum Wells, Wires and Dots: Theoretical and Computational Physics. Wiley, Chichester (2000)

    Google Scholar 

  • Kayanuma, Y.: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38, 9797–9805 (1988)

    Article  ADS  Google Scholar 

  • Kent, P.R.C., Bellaiche, L., Zunger, A.: Pseudopotential theory of dilute III–V nitrides. Semicond. Sci. Technol. 17, 851–859 (2002)

    Article  ADS  Google Scholar 

  • Kobayasi, T., Nara, H.: Propreties of nonlocal pseudopotentials of Si and Ge optimized under full interdependence among potential parameters. Bull. Coll. Med. Sci. Tohoku Univ. 2, 7–16 (1993)

    Google Scholar 

  • Kshirsagar, A., Kumbhojkar, N.: Empirical pseudo-potential studies on electronic structure of semiconducting quantum dots. Bull. Mater. Sci. 31, 297–307 (2008)

    Article  Google Scholar 

  • Lam, Y., Loehr, J.P., Singh, J.: Comparison of steady-state and transient characteristics of lattice-matched and strained InGaAs–AlGaAs (on GaAs) and InGaAs–AlInAs (on InP) quantum-well lasers. IEEE J. Quantum Electron. 28, 1248–1260 (1992)

    Article  ADS  Google Scholar 

  • Mezrag, F., Bouarissa, N., Boucenna, M.: The size-dependent electronic and optical properties of InAs quantum dots. Optik 127, 1167–1170 (2016)

    Article  ADS  Google Scholar 

  • Ragan, H.: Direct energy bandgap group IV alloys and nanostructures. Ph.D. Thesis, California Institute of Technology, Pasadena, California (2002)

  • Venema, L.: Nanoscience: small talk. Nature 442, 994–995 (2006)

    Article  ADS  Google Scholar 

  • Vogl, P.: Dynamical effective charges in semiconductors: a pseudopotential approach. J. Phys. C: Solid State Phys. 11, 251–262 (1978)

    Article  ADS  Google Scholar 

  • Vurgaftman, I., Meyer, J.R., Ram Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). (and references therein)

    Article  ADS  Google Scholar 

Download references

Funding

The funding was provided by Materials Science and Informatics Laboratory (Grant No. MSIL_0012_QD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gueddim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekhouche, H., Rahou, D., Gueddim, A. et al. Electron states, effective masses and transverse effective charge of InAs quantum dots. Opt Quant Electron 50, 309 (2018). https://doi.org/10.1007/s11082-018-1576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1576-z

Keywords

Navigation