Skip to main content
Log in

Circular ripple formation on the silicon wafer surface after interaction with linearly polarized femtosecond laser pulses in air and water environments

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Ultrashort laser pulse interaction with the surface of silicon wafer in air and water environments is investigated. Ti:sapphire laser with 40 femtosecond laser pulses at 790 nm and 10 Hz repetition rate was used. The ablation threshold of the silicon surface in the air was determined to be about 0.28 J cm−2. The surface morphology was studied by using scanning electron microscope images. The size of the regular ripples formed in the air environment is a little smaller than the laser wavelength. Due to the nonlinear interaction and self-focusing before the target, the ripples size reduced to nearly a half of the laser wavelength in the water. Moreover, the spikes’ structure formation and their diameter in air and water were studied. Two regimes for spike formation in water are proposed that can explain the anomalous decrease of the spikes’ diameter in higher fluence. During the interaction of single linearly polarized femtosecond laser pulse with the surface, an irregular ripple formation that called circular ripple is observed. This structure which is a result of radiation pressure implies to the surface by the end of the pulse. A new physical model for interpretation of the circular ripples formation based on the ponderomotive force of an ultrashort pulse laser is proposed which can predict the size of the circular ripples. The calculated results are in accordance with our experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albu, C., Dinescu, A., Filipescu, M., Ulmeanu, M., Zamfirescu, M.: Periodical structures induced by femtosecond laser on metals in air and liquid environments. Appl. Surf. Sci. 278, 347–351 (2013). https://doi.org/10.1016/J.APSUSC.2012.11.075

    Article  ADS  Google Scholar 

  • Barcikowski, S., Hahn, A., Kabashin, A.V., Chichkov, B.N.: Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl. Phys. A 87, 47–55 (2007). https://doi.org/10.1007/s00339-006-3852-1

    Article  ADS  Google Scholar 

  • Barnes, W.L.: Surface plasmon–polariton length scales: a route to sub-wavelength optics. J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006)

    Article  ADS  Google Scholar 

  • Besner, S., Degorce, J.Y., Kabashin, A. V, Meunier, M.: Surface modifications during femtosecond laser ablation in vacuum, air and water. In: Proceedings of SPIE Vol. p. 555 (2004)

  • Bonse, J., Baudach, S., Krüger, J., Kautek, W., Lenzner, M.: Femtosecond laser ablation of silicon–modification thresholds and morphology. Appl. Phys. A Mater. Sci. Process. 74, 19–25 (2002)

    Article  ADS  Google Scholar 

  • Chichkov, B.N., Momma, C., Nolte, S., Von Alvensleben, F., Tünnermann, A.: Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996)

    Article  ADS  Google Scholar 

  • Daminelli, G., Krüger, J., Kautek, W.: Femtosecond laser interaction with silicon under water confinement. Thin Solid Films 467, 334–341 (2004)

    Article  ADS  Google Scholar 

  • Derrien, T.J.-Y., Itina, T.E., Torres, R., Sarnet, T., Sentis, M.: Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J. Appl. Phys. 114, 083104 (2013)

    Article  ADS  Google Scholar 

  • Derrien, T.-Y., Koter, R., Krüger, J., Höhm, S., Rosenfeld, A., Bonse, J.: Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water. J. Appl. Phys. 116, 074902 (2014)

    Article  ADS  Google Scholar 

  • Emel’yanov, V.I., Danilov, P.A., Zayarnyi, D.A., Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Shikunov, D.I., Yurovskikh, V.I.: Thermocavitation melt instability and micro-crown formation near the threshold for femtosecond laser spallation of a silicon surface. JETP Lett. 100, 145–149 (2014). https://doi.org/10.1134/s0021364014150053

    Article  Google Scholar 

  • Etsion, I.: State of the art in laser surface texturing. Trans. ASME-F-J. Tribol. 127, 248–253 (2005)

    Article  Google Scholar 

  • Gamaly, E.G., Rode, A.V., Luther-Davies, B., Tikhonchuk, V.T.: Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9, 949–957 (2002). https://doi.org/10.1063/1.1447555

    Article  ADS  Google Scholar 

  • Gurevich, E.L.: On the influence of surface plasmon–polariton waves on pattern formation upon laser ablation. Appl. Surf. Sci. 278, 52–56 (2013). https://doi.org/10.1016/J.APSUSC.2013.01.103

    Article  ADS  Google Scholar 

  • Halbwax, M., Sarnet, T., Delaporte, P., Sentis, M., Etienne, H., Torregrosa, F., Vervisch, V., Perichaud, I., Martinuzzi, S.: Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication. Thin Solid Films 516, 6791–6795 (2008)

    Article  ADS  Google Scholar 

  • Her, T.-H., Finlay, R.J., Wu, C., Deliwala, S., Mazur, E.: Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 73, 1673–1675 (1998)

    Article  ADS  Google Scholar 

  • Her, T.-H., Finlay, R.J., Wu, C., Mazur, E.: Femtosecond laser-induced formation of spikes on silicon. Appl. Phys. A Mater. Sci. Process. 70, 383–385 (2000)

    Article  ADS  Google Scholar 

  • Ionin, A.A., Kudryashov, S.I., Seleznev, L.V., Sinitsyn, D.V., Bunkin, A.F., Lednev, V.N., Pershin, S.M.: Thermal melting and ablation of silicon by femtosecond laser radiation. J. Exp. Theor. Phys. 116, 347–362 (2013). https://doi.org/10.1134/S106377611302012X

    Article  ADS  Google Scholar 

  • Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Seleznev, L.V., Sinitsyn, D.V., Golosov, E.V., Kolobov, Y.R., Ligachev, A.E.: “Heterogeneous” versus “homogeneous” nucleation and growth of microcones on titanium surface under UV femtosecond-laser irradiation. Appl. Phys. A 116, 1133–1139 (2014a). https://doi.org/10.1007/s00339-013-8196-z

    Article  ADS  Google Scholar 

  • Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Saltuganov, P.N., Seleznev, L.V., Sinitsyn, D.V., Sunchugasheva, E.S.: Femtosecond laser fabrication of sub-diffraction nanoripples on wet Al surface in multi-filamentation regime: high optical harmonics effects? Appl. Surf. Sci. 292, 678–681 (2014b). https://doi.org/10.1016/j.apsusc.2013.12.032

    Article  ADS  Google Scholar 

  • Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Seleznev, L.V., Sinitsyn, D.V., Emel’yanov, V.I.: Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface. Laser Phys. Lett. 12, 025902 (2015). https://doi.org/10.1088/1612-2011/12/2/025902

    Article  Google Scholar 

  • Ionin, A.A., Kudryashov, S.I., Rudenko, A.A., Seleznev, L.V., Sinitsyn, D.V., Makarov, S.V.: Nonlinear optical feedback for nano- and micropatterning of silicon surface under femtosecond laser irradiation. Opt. Mater. Express 7, 2793–2807 (2017). https://doi.org/10.1364/OME.7.002793

    Article  ADS  Google Scholar 

  • Kudryashov, S.I., Saraeva, I.N., Lednev, V.N., Pershin, S.M., Rudenko, A.A., Ionin, A.A.: Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol. Appl. Phys. Lett. 112, 203101 (2018). https://doi.org/10.1063/1.5026591

    Article  ADS  Google Scholar 

  • Liu, X., Du, D., Mourou, G.: Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 33, 1706–1716 (1997). https://doi.org/10.1109/3.631270

    Article  ADS  Google Scholar 

  • Liu, W., Kosareva, O., Golubtsov, I.S., Iwasaki, A., Becker, A., Kandidov, V.P., Chin, S.L.: Femtosecond laser pulse filamentation versus optical breakdown in H2O. Appl. Phys. B Lasers Opt. 76, 215–229 (2003)

    Article  ADS  Google Scholar 

  • Liu, H., Chen, F., Wang, X., Yang, Q., Bian, H., Si, J., Hou, X.: Influence of liquid environments on femtosecond laser ablation of silicon. Thin Solid Films 518, 5188–5194 (2010)

    Article  ADS  Google Scholar 

  • Macchi, A.: A Superintense Laser-Plasma Interaction Theory Primer. Springer, Dordrecht (2013)

    Book  Google Scholar 

  • Maragkaki, S., Derrien, T.J.-Y., Levy, Y., Bulgakova, N.M., Ostendorf, A., Gurevich, E.L.: Wavelength dependence of picosecond laser-induced periodic surface structures on copper. Appl. Surf. Sci. 417, 88–92 (2017a). https://doi.org/10.1016/j.apsusc.2017.02.068

    Article  ADS  Google Scholar 

  • Maragkaki, S., Elkalash, A., Gurevich, E.L.: Orientation of ripples induced by ultrafast laser pulses on copper in different liquids. Appl. Phys. A 123, 721 (2017b). https://doi.org/10.1007/s00339-017-1336-0

    Article  ADS  Google Scholar 

  • Mizeikis, V., Juodkazis, S., Ye, J.-Y., Rode, A., Matsuo, S., Misawa, H.: Silicon surface processing techniques for micro-systems fabrication. Thin Solid Films 438, 445–451 (2003)

    Article  ADS  Google Scholar 

  • Nibbering, E.T.J., Grillon, G., Franco, M.A., Prade, B.S., Mysyrowicz, A.: Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. JOSA B 14, 650–660 (1997)

    Article  ADS  Google Scholar 

  • Obara, G., Tanaka, Y., Nedyalkov, N.N., Terakawa, M., Obara, M.: Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates. Appl. Phys. Lett. 99, 61106 (2011). https://doi.org/10.1063/1.3624925

    Article  Google Scholar 

  • Ouyang, J., Perrie, W., Allegre, O.J., Heil, T., Jin, Y., Fearon, E., Eckford, D., Edwardson, S.P., Dearden, G.: Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt. Express 23, 12562–12572 (2015). https://doi.org/10.1364/OE.23.012562

    Article  ADS  Google Scholar 

  • Phillips, K.C., Gandhi, H.H., Mazur, E., Sundaram, S.K.: Ultrafast laser processing of materials: a review. Adv. Opt. Photonics 7, 684–712 (2015)

    Article  ADS  Google Scholar 

  • Sedao, X., Shugaev, M.V., Wu, C., Douillard, T., Esnouf, C., Maurice, C., Reynaud, S., Pigeon, F., Garrelie, F., Zhigilei, L.V., Colombier, J.-P.: Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano 10, 6995–7007 (2016). https://doi.org/10.1021/acsnano.6b02970

    Article  Google Scholar 

  • Shen, M.Y., Crouch, C.H., Carey, J.E., Mazur, E.: Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl. Phys. Lett. 85, 5694–5696 (2004). https://doi.org/10.1063/1.1828575

    Article  ADS  Google Scholar 

  • Sipe, J.E., Young, J.F., Preston, J.S., Van Driel, H.M.: Laser-induced periodic surface structure. I. Theory Phys. Rev. B 27, 1141–1154 (1983)

    Article  ADS  Google Scholar 

  • Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., von der Linde, D., Oparin, A., Meyer-ter-Vehn, J., Anisimov, S.I.: Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 81, 224–227 (1998). https://doi.org/10.1103/PhysRevLett.81.224

    Article  ADS  Google Scholar 

  • Stratakis, E., Zorba, V., Barberoglou, M., Fotakis, C., Shafeev, G.A.: Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids. Appl. Surf. Sci. 255, 5346–5350 (2009). https://doi.org/10.1016/J.APSUSC.2008.07.183

    Article  ADS  Google Scholar 

  • Sugioka, K., Cheng, Y.: Ultrafast lasers–reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014)

    Article  ADS  Google Scholar 

  • Wee, L.M., Ng, E.Y.K., Prathama, A.H., Zheng, H.: Micro-machining of silicon wafer in air and under water. Opt. Laser Technol. 43, 62–71 (2011). https://doi.org/10.1016/J.OPTLASTEC.2010.05.005

    Article  ADS  Google Scholar 

  • Yang, J., Luo, F., Kao, T.S., Li, X., Ho, G.W., Teng, J., Luo, X., Hong, M.: Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci. Appl. 3, e185 (2014)

    Article  ADS  Google Scholar 

  • Ye, S., Cao, Q., Wang, Q., Wang, T., Peng, Q.: A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation. Sci. Rep. 6, 37591 (2016)

    Article  ADS  Google Scholar 

  • Zalyubovskiy, S.J., Bogdanova, M., Deinega, A., Lozovik, Y., Pris, A.D., An, K.H., Hall, W.P., Potyrailo, R.A.: Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. JOSA A. 29, 994–1002 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Hajiesmaeilbaigi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodarzi, R., Hajiesmaeilbaigi, F. Circular ripple formation on the silicon wafer surface after interaction with linearly polarized femtosecond laser pulses in air and water environments. Opt Quant Electron 50, 299 (2018). https://doi.org/10.1007/s11082-018-1562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1562-5

Keywords

Navigation