Skip to main content
Log in

Design of bias-free operational uni-traveling carrier photodiodes for terahertz wave generation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the bias-free operational uni-traveling-carrier photodiode (UTC-PD) for terahertz wave generation is designed via physics-based simulation. The physics-based model is established at first and then the reliability of the simulation is demonstrated by comparison to previously reported experimental results. The epitaxial layers of the UTC-PD are analyzed and investigated to improve its bandwidth and output-power simultaneously. By optimizing the spacers and the collector, and using a combination of optimal graded-doping profile and graded-bandgap material for the absorber, the 3-dB bandwidth and the peaked output-power of the UTC-PD are improved by 36.5% and 2.262 dB, respectively. The 3-dB bandwidth of the optimized bias-free operational UTC-PD with mesa diameter of 8, 6, 5, 4 and 3-μm can achieve 106, 137.67, 158.3, 183 and 211 GHz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Angkaew, T., Umezawa, T., Kawanishi, T.: Crosstalk reduction for large scale photonic integrated circuits. In: Proceedings of IEEE International Topical Meeting on I Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), paper TuEB-9. IEEE (2014)

  • Chen, H., Beling, A., Pan, H., Campbell, J.C.: A method to estimate the junction temperature of photodetectors operating at high photocurrent. IEEE J. Quantum Electron. 45(12), 1537–1541 (2009)

    Article  ADS  Google Scholar 

  • Cherry, S.: Edholm’s law of bandwidth. IEEE Spectr. 41(7), 58–60 (2004)

    Article  Google Scholar 

  • Cui, D., Hubbard, S.M., Pavlidis, D., Eisenbach, A., Chelli, C.: Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors. Semicond. Sci. Technol. 17(6), 503–509 (2002)

    Article  ADS  Google Scholar 

  • Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107(11), Art. 111101 (2010)

  • Ghione, G.: Semiconductor Devices for High-Speed Optoelectronics. United States of America by Cambridge University Press, Chap. 4 (2009)

  • Huang, Y.-L., Sun, C.-K.: Nonlinear saturation behaviors of high-speed p-i-n photodetectors. J. Lightwave Technol. 18(2), 203–212 (2000a)

    Article  ADS  Google Scholar 

  • Huang, Y.-L., Sun, C.-K.: Nonlinear saturation behaviors of high-speed p-i-n photodetectors. J. Lightwave Technol. 18(2), 203–212 (2000b)

    Article  ADS  Google Scholar 

  • Ishibashi, T., Furuta, T., Fushimi, H., Kodama, S., Ito, H., Nagatsuma, T., et al.: InP/InGaAs uni-traveling-carrier photodiodes. IEICE Trans. Electron. E83-C(6), 938–949 (2000)

    Google Scholar 

  • Ito, H., Yoshimatsu, T., Yamamoto, H., Ishibashi, T.: Broadband photonic terahertz-wave emitter integrating UTC-PD and novel planar antenna. In: Proceedings of the SPIE, vol. 8716, Art. 871602 (2013)

  • Ito, H., Furuta, T., Kodama, S., Ishibashi, T.: InP/InGaAs uni-travelling-carrier photodiode with a 310 GHz bandwidth. Electron. Lett. 36(21), 1809–1810 (2000)

    Article  Google Scholar 

  • Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T.: High-speed and high-output InP/InGaAs uni-traveling carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004a)

    Article  ADS  Google Scholar 

  • Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T.: High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004b)

    Article  ADS  Google Scholar 

  • Kleine-Ostmann, T., Nagatsuma, T.: A review on terahertz communications research. J. Infrared Millim Terahertz Waves 32(2), 143–171 (2011)

    Article  Google Scholar 

  • Li, Z., Pan, H., Chen, H., Beling, A., Campbell, J.C.: High-saturation-current modified uni-traveling-carrier photodiode with cliff layer. IEEE J. Quantum Electron. 46(5), 626–632 (2010)

    Article  ADS  Google Scholar 

  • Liu, T., Huang, Y., Chen, Q., Fei, J., Liu, K., Duan, X., Ren, X.: Transient simulation of UTC-PD using drift-diffusion model. In: Proceedings of IEEE International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), pp. 139–140. IEEE, (2017)

  • Maloney, T.J., Frey, J.: Transient and steady-state electron transport properties of GaAs and InP. J. Appl. Phys. 48(2), 781–787 (1977)

    Article  ADS  Google Scholar 

  • Nagatruma, T., Carpintero, G.: Recent progress and future prospect of photonics-enabled terahertz communications research. IEICE Trans. Electron. E98-C(12), 1060–1070 (2015)

    Article  ADS  Google Scholar 

  • Pan, H., Li, Z., Beling, A., Campbell, J.C.: Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber. Opt. Express 17(22), 20222–20226 (2009)

    Article  Google Scholar 

  • Preu, S., Döhler, G.H., Malzer, S., Wang, L.J., Gossard, A.C.: Tunable, continuous-wave terahertz photomixer sources and applications. J. Appl. Phys. 109(6), Art. 061301 (2011)

  • Seeds, A.J., Shams, H., Fice, M.J., Renaud, C.C.: TeraHertz photonics for wireless communications. J. Lightwave Technol. 33(3), 579–587 (2014)

    Article  ADS  Google Scholar 

  • Shimizu, N., Watanabe, N., Furuta, T., Ishibashi, T.: InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz. IEEE Photonics Technol. Lett. 10(3), 412–414 (1998)

    Article  ADS  Google Scholar 

  • Umezawa, T., Akahane, K., Yamamoto, N., Inagaki, K., Kanno, A., Kawanishi, T.: Zero-bias operational ultra-broadband UTC-PD above 110 GHz for high symbol rate PD-array in high-density photonic integration. In: Proceedings of IEEE Conference on Optical Fiber Communications Conference and Exhibition, Paper M3C.7, IEEE (2015)

  • Umezawa, T., Kanno, A., Kashima, K., Matsumoto, A., Akahane, K., Yamamoto, N., Kawanishi, T.: Bias-free operational UTC-PD above 110 GHz and its application to high baud rate fixed-fiber communication and W-band photonic wireless communication. J. Lightwave Technol. 34(13), 3138–3147 (2016)

    Article  ADS  Google Scholar 

  • Wang, X., Duan, N., Chen, H., Campbell, J.C.: InGaAs–InP photodiodes with high responsivity and high saturation power. IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007)

    Article  ADS  Google Scholar 

  • Wun, J.-M., Lai, C.-H., Chen, N.-W., Bowers, J.E., Shi, J.-W.: Flip-chip bonding packaged THz photodiode with broadband high-power performance. IEEE Photon. Technol. Lett. 26(24), 2462–2464 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Laboratory of Quantum Optoelectronics and the Theory of Bivergentum and Beijing International Scientific and Technological Cooperation Base of Information Optoelectronics and Nano-heterogeneous Structure. This work was funded by Natural National Science Foundation of China (NSFC) (61574019, 61674018, 61274020), and the Natural Science Foundation of Beijing Municipality (No. 4132069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Huang, Y., Niu, H. et al. Design of bias-free operational uni-traveling carrier photodiodes for terahertz wave generation. Opt Quant Electron 50, 284 (2018). https://doi.org/10.1007/s11082-018-1550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1550-9

Keywords

Navigation