Advertisement

Bright screening solitons in a photorefractive waveguide

  • Aavishkar Katti
Article

Abstract

Characteristics of propagation of bright screening solitons are studied in a photorefractive waveguide. The investigation is performed under paraxial wave approximation and Wentzel–Kramers–Brillouin–Jefferys approximation. A Gaussian ansatz for the soliton shape is used instead of the numerical solutions. The planar waveguide structure intensifies the self-focussing while decreasing the minimum or threshold power required for self trapping. The waveguide structure embedded in the crystal can self trap a soliton of power lower than the threshold power. As the waveguide parameter increases, minimum required power to self trap the beam decreases. The existence of bistable states is also predicted. Four regimes of power are identified in which the solitons behaviour is studied. Propagation of screening solitons in a photorefractive waveguide is studied in the absence of the photovoltaic and pyroelectric effect for the first time.

Keywords

Photorefractive effect Optical spatial solitons Planar waveguide 

References

  1. Akhmanov, S.A., Sukhoruk, A.P., Khokhlov, R.V.: Self-focusing and difraction of light beams in a nonlinear medium. Sov. Phys. Uspekhi USSR 10(5), 609–636 (1968)CrossRefADSGoogle Scholar
  2. Akhouri, B.P., Gupta, P.K.: Waveguiding effect on optical spatial solitons in centrosymmetric photorefractive materials. J. Opt. 46(3), 281–286 (2017).  https://doi.org/10.1007/s12596-016-0372-z CrossRefGoogle Scholar
  3. Anderson, D.: Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27(6), 3135–3145 (1983).  https://doi.org/10.1103/PhysRevA.27.3135 CrossRefADSGoogle Scholar
  4. Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75(8), 086401 (2012).  https://doi.org/10.1088/0034-4885/75/8/086401 CrossRefADSGoogle Scholar
  5. Christodoulides, D.N., Carvalho, M.I.: Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12(9), 1628–1633 (1995).  https://doi.org/10.1364/JOSAB.12.001628 CrossRefADSGoogle Scholar
  6. Doran, N.J., Wood, D.: Soliton processing element for all-optical switching and logic. J. Opt. Soc. Am. B 4(11), 1843–1846 (1987).  https://doi.org/10.1364/JOSAB.4.001843 CrossRefADSGoogle Scholar
  7. Duree, G.C., Shultz, J.L., Salamo, G.J., Segev, M., Yariv, A., Crosignani, B., Di Porto, P., Sharp, E.J., Neurgaonkar, R.R.: Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 71(4), 533–536 (1993).  https://doi.org/10.1103/PhysRevLett.71.533 CrossRefADSGoogle Scholar
  8. Katti, A.: Bright pyroelectric quasi-solitons in a photorefractive waveguide. Opt. Int. J. Light Electron Opt. 156, 433–438 (2018).  https://doi.org/10.1016/J.IJLEO.2017.10.105 CrossRefGoogle Scholar
  9. Katti, Aavishkar, Yadav, R.A.: Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect. Phys. Lett. Sect. A General At. Solid State Phys. 381(3), 166–170 (2017).  https://doi.org/10.1016/j.physleta.2016.10.054 MathSciNetGoogle Scholar
  10. Katti, A., Yadav, R.A., Prasad, A.: Bright optical spatial solitons in photorefractive waveguides having both the linear and quadratic electro-optic effect. Wave Motion 77, 64–76 (2018).  https://doi.org/10.1016/J.WAVEMOTI.2017.10.002 MathSciNetCrossRefGoogle Scholar
  11. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)Google Scholar
  12. Królikowski, W., Kivshar, Y.S.: Soliton-based optical switching in waveguide arrays. J. Opt. Soc. Am. B 13(5), 876–887 (1996).  https://doi.org/10.1364/JOSAB.13.000876 CrossRefADSGoogle Scholar
  13. Liu, J.S., Lu, K.Q.: Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection. J. Opt. Soc. Am. B: Opt. Phys. 16(4), 550–555 (1999)CrossRefGoogle Scholar
  14. Peccianti, M., Conti, C., A, Gaetano, De Luca, A., Umeton, C.: All-optical switching and logic gating with spatial solitons in liquid crystals. Appl. Phys. Lett. 81(18), 3335–3337 (2002).  https://doi.org/10.1063/1.1519101 CrossRefADSGoogle Scholar
  15. Peccianti, M., Conti, C., Assanto, G., De Luca, A., Umeton, C.: Routing of anisotropic spatial solitons and modulational instability in liquid crystals. Earth Moon Planets 432, 733–738 (2004).  https://doi.org/10.1038/nature03111.1 Google Scholar
  16. Petter, J., Denz, C.: Guiding and dividing waves with photorefractive solitons. Opt. Commun. 188(1–4), 55–61 (2001).  https://doi.org/10.1016/S0030-4018(00)01142-1 CrossRefADSGoogle Scholar
  17. Popescu, S.T., Petris, A., Vlad, V.I.: Recording of self-induced waveguides in lithium niobate at 405 Nm wavelength by photorefractive–pyroelectric effect. J. Appl. Phys. 113(21), 213110 (2013).  https://doi.org/10.1063/1.4808321 CrossRefADSGoogle Scholar
  18. Safioui, J., Devaux, F., Chauvet, M.: Pyroliton: pyroelectric spatial soliton. Opt. Express 17(24), 22209–22216 (2009).  https://doi.org/10.1364/OE.17.022209 CrossRefADSGoogle Scholar
  19. Safioui, J., Fazio, E., Devaux, F., Chauvet, M.: Surface-wave pyroelectric photorefractive solitons. Opt. Lett. 35(8), 1254–1256 (2010).  https://doi.org/10.1364/OL.35.001254 CrossRefADSGoogle Scholar
  20. Segev, M., Agranat., A.J.: Spatial solitons in centrosymmetric photorefractive media. Opt. Lett. 22(17), 1299–1301 (1997).  https://doi.org/10.1364/OL.22.001299 CrossRefADSGoogle Scholar
  21. Segev, M., Crosignani, B., Yariv, A., Fischer, B.: Spatial solitons in photorefractive media. Phys. Rev. Lett. 68(7), 923–926 (1992).  https://doi.org/10.1103/PhysRevLett.68.923 CrossRefADSGoogle Scholar
  22. Shwetanshumala, S., Konar, S.: Bright optical spatial solitons in a photorefractive waveguide. Phys. Scr. 82(4), 045404 (2010).  https://doi.org/10.1088/0031-8949/82/04/045404 CrossRefzbMATHGoogle Scholar
  23. Soto-Crespo, J.M., Wright, E.M.: All-optical switching of solitons in two- and three-core nonlinear fiber couplers. J. Appl. Phys. 70(12), 7240–7243 (1991).  https://doi.org/10.1063/1.349768 CrossRefADSGoogle Scholar
  24. Stegeman, G.I.: Optical spatial solitons and their interactions: universality and diversity. Science 286(5444), 1518–1523 (1999).  https://doi.org/10.1126/science.286.5444.1518 CrossRefGoogle Scholar
  25. Su, Y., Jiang, Q., Ji, X.: Photorefractive spatial solitons supported by pyroelectric effects in strontium barium niobate crystals. Optik 126(18), 1621–1624 (2015).  https://doi.org/10.1016/j.ijleo.2015.04.053 CrossRefADSGoogle Scholar
  26. Valley, G.C., Segev, M., Crosignani, B., Yariv, A., Fejer, M.M., Bashaw, M.C.: Dark and bright photovoltaic spatial solitons. Phys. Rev. A 50(6), R4457–R4460 (1994).  https://doi.org/10.1103/PhysRevA.50.R4457 CrossRefADSGoogle Scholar
  27. Vlasov, S.N., Petrishchev, V.A., Talanov, V.I.: Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 14(9), 1062–1070 (1971).  https://doi.org/10.1007/bf01029467 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBanasthali VidyapithNewai(Tonk)India

Personalised recommendations