Bright screening solitons in a photorefractive waveguide



Characteristics of propagation of bright screening solitons are studied in a photorefractive waveguide. The investigation is performed under paraxial wave approximation and Wentzel–Kramers–Brillouin–Jefferys approximation. A Gaussian ansatz for the soliton shape is used instead of the numerical solutions. The planar waveguide structure intensifies the self-focussing while decreasing the minimum or threshold power required for self trapping. The waveguide structure embedded in the crystal can self trap a soliton of power lower than the threshold power. As the waveguide parameter increases, minimum required power to self trap the beam decreases. The existence of bistable states is also predicted. Four regimes of power are identified in which the solitons behaviour is studied. Propagation of screening solitons in a photorefractive waveguide is studied in the absence of the photovoltaic and pyroelectric effect for the first time.


Photorefractive effect Optical spatial solitons Planar waveguide 


  1. Akhmanov, S.A., Sukhoruk, A.P., Khokhlov, R.V.: Self-focusing and difraction of light beams in a nonlinear medium. Sov. Phys. Uspekhi USSR 10(5), 609–636 (1968)ADSCrossRefGoogle Scholar
  2. Akhouri, B.P., Gupta, P.K.: Waveguiding effect on optical spatial solitons in centrosymmetric photorefractive materials. J. Opt. 46(3), 281–286 (2017). CrossRefGoogle Scholar
  3. Anderson, D.: Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27(6), 3135–3145 (1983). ADSCrossRefGoogle Scholar
  4. Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75(8), 086401 (2012). ADSCrossRefGoogle Scholar
  5. Christodoulides, D.N., Carvalho, M.I.: Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12(9), 1628–1633 (1995). ADSCrossRefGoogle Scholar
  6. Doran, N.J., Wood, D.: Soliton processing element for all-optical switching and logic. J. Opt. Soc. Am. B 4(11), 1843–1846 (1987). ADSCrossRefGoogle Scholar
  7. Duree, G.C., Shultz, J.L., Salamo, G.J., Segev, M., Yariv, A., Crosignani, B., Di Porto, P., Sharp, E.J., Neurgaonkar, R.R.: Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 71(4), 533–536 (1993). ADSCrossRefGoogle Scholar
  8. Katti, A.: Bright pyroelectric quasi-solitons in a photorefractive waveguide. Opt. Int. J. Light Electron Opt. 156, 433–438 (2018). CrossRefGoogle Scholar
  9. Katti, Aavishkar, Yadav, R.A.: Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect. Phys. Lett. Sect. A General At. Solid State Phys. 381(3), 166–170 (2017). MathSciNetGoogle Scholar
  10. Katti, A., Yadav, R.A., Prasad, A.: Bright optical spatial solitons in photorefractive waveguides having both the linear and quadratic electro-optic effect. Wave Motion 77, 64–76 (2018). MathSciNetCrossRefGoogle Scholar
  11. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)Google Scholar
  12. Królikowski, W., Kivshar, Y.S.: Soliton-based optical switching in waveguide arrays. J. Opt. Soc. Am. B 13(5), 876–887 (1996). ADSCrossRefGoogle Scholar
  13. Liu, J.S., Lu, K.Q.: Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection. J. Opt. Soc. Am. B: Opt. Phys. 16(4), 550–555 (1999)CrossRefGoogle Scholar
  14. Peccianti, M., Conti, C., A, Gaetano, De Luca, A., Umeton, C.: All-optical switching and logic gating with spatial solitons in liquid crystals. Appl. Phys. Lett. 81(18), 3335–3337 (2002). ADSCrossRefGoogle Scholar
  15. Peccianti, M., Conti, C., Assanto, G., De Luca, A., Umeton, C.: Routing of anisotropic spatial solitons and modulational instability in liquid crystals. Earth Moon Planets 432, 733–738 (2004). Google Scholar
  16. Petter, J., Denz, C.: Guiding and dividing waves with photorefractive solitons. Opt. Commun. 188(1–4), 55–61 (2001). ADSCrossRefGoogle Scholar
  17. Popescu, S.T., Petris, A., Vlad, V.I.: Recording of self-induced waveguides in lithium niobate at 405 Nm wavelength by photorefractive–pyroelectric effect. J. Appl. Phys. 113(21), 213110 (2013). ADSCrossRefGoogle Scholar
  18. Safioui, J., Devaux, F., Chauvet, M.: Pyroliton: pyroelectric spatial soliton. Opt. Express 17(24), 22209–22216 (2009). ADSCrossRefGoogle Scholar
  19. Safioui, J., Fazio, E., Devaux, F., Chauvet, M.: Surface-wave pyroelectric photorefractive solitons. Opt. Lett. 35(8), 1254–1256 (2010). ADSCrossRefGoogle Scholar
  20. Segev, M., Agranat., A.J.: Spatial solitons in centrosymmetric photorefractive media. Opt. Lett. 22(17), 1299–1301 (1997). ADSCrossRefGoogle Scholar
  21. Segev, M., Crosignani, B., Yariv, A., Fischer, B.: Spatial solitons in photorefractive media. Phys. Rev. Lett. 68(7), 923–926 (1992). ADSCrossRefGoogle Scholar
  22. Shwetanshumala, S., Konar, S.: Bright optical spatial solitons in a photorefractive waveguide. Phys. Scr. 82(4), 045404 (2010). CrossRefMATHGoogle Scholar
  23. Soto-Crespo, J.M., Wright, E.M.: All-optical switching of solitons in two- and three-core nonlinear fiber couplers. J. Appl. Phys. 70(12), 7240–7243 (1991). ADSCrossRefGoogle Scholar
  24. Stegeman, G.I.: Optical spatial solitons and their interactions: universality and diversity. Science 286(5444), 1518–1523 (1999). CrossRefGoogle Scholar
  25. Su, Y., Jiang, Q., Ji, X.: Photorefractive spatial solitons supported by pyroelectric effects in strontium barium niobate crystals. Optik 126(18), 1621–1624 (2015). ADSCrossRefGoogle Scholar
  26. Valley, G.C., Segev, M., Crosignani, B., Yariv, A., Fejer, M.M., Bashaw, M.C.: Dark and bright photovoltaic spatial solitons. Phys. Rev. A 50(6), R4457–R4460 (1994). ADSCrossRefGoogle Scholar
  27. Vlasov, S.N., Petrishchev, V.A., Talanov, V.I.: Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 14(9), 1062–1070 (1971). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBanasthali VidyapithNewai(Tonk)India

Personalised recommendations