Skip to main content
Log in

Intensity modulation lens on the basis of nano-scale golden rods and liquid crystal layer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, an active 2D plasmonic lens has been carefully designed to achieve intensity beam modulation. The design has been thoroughly studied by using rigorous finite element method (FEM). Combination of silicon oxide (SiO2), nematic liquid crystal (NLC) layer and array of non-uniform nano-scale golden (Au) rods along with finely optimized geometry paved the way to achieve good modulation intensity in terms of extinction ratio of about 3.5 dB. Further, the tolerance analysis reveals that the performance of the suggested intensity-modulation lens is almost unchangeable with ± 15 nm variation in the nano-scale golden rods dimensions. Additionally, the proposed lens has been examined using different noble metals such as silver (Ag) and Aluminum (Al). In comparison with other reported lenses, the proposed lenses based Ag, Al and Au have relatively smaller dimensions, maximum intensity amplification factors of about 10.4, 16.6 and 12.5; respectively. The proposed lens may render itself as an efficient unit in the ultra-high nano scale integrated optical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdelghani, A.M., Areed, N.F.F., Hameed, M.F., el Hamid Hindy, M.A., Obayya, S.S.A.: Design of UWB antenna using reconfigurable optical router. Opt. Quant. Electron. 47(8), 2675–2688 (2015)

    Article  Google Scholar 

  • Areed, N.F.F., Obayya, S.S.A.: Novel all-optical liquid photonic crystal router. IEEE Photonics Technol. Lett. 25(13), 1254–1257 (2013)

    Article  ADS  Google Scholar 

  • Areed, N.F.F., Obayya, S.S.A.: Multiple image encryption system based on nematic liquid photonic crystal layers. J. Lightwave Technol. 32, 1344–1350 (2014)

    Article  ADS  Google Scholar 

  • Areed, N.F.F., El Fakhrany, A., Hameed, M.F., Obayya, S.S.A.: Controlled optical photonic crystal AND gate using nematic liquid crystal layers. J. Opt. Quant. Electron. 49, 45–49 (2017). https://doi.org/10.1007/s11082-016-0852-zpp

    Article  Google Scholar 

  • Bahramipanah, M., Abrishamian, M.S., Mirtaheri, S.A.: Beam manipulating by metal–anisotropic–metal plasmonic lens. J. Opt. 14(10), 105001 (2012)

    Article  ADS  Google Scholar 

  • Bedoya, A.C., Domachuk, P., Grillet, C., Monat, C., Mägi, E.: Reconfigurable photonic crystal waveguides created by selective liquid infiltration. Opt. Express 20(10), 11046–11056 (2012)

    Article  ADS  Google Scholar 

  • Chen, J., Wang, W.S., Fang, J., Varahramyan, K.: Variable-focusing microlens with microfluidic chip. J. Micromech. Microeng. 14, 675–680 (2004)

    Article  ADS  Google Scholar 

  • Chen, J., Wang, C., Lu, G., Li, W., Xiao, J., Gong, Q.: Highly efficient nanofocusing based on a T-shape micro-slit surrounded with multi-slits. Opt. Express 20(16), 17734–17740 (2012)

    Article  ADS  Google Scholar 

  • El-metwally, A., Areed, N.F.F., Hameed, M.F.O.: Obayya SSA Reconfigurable unidirectional photonic crystal using liquid crystal layer. IEEE Photonics J. 9(1), 1–9 (2017)

    Article  Google Scholar 

  • Elrabiaey, M.A., Areed, N.F.F., Obayya, S.S.: Novel plasmonic data storage based on nematic liquid crystal layers. J. IEEE Light Wave Technol 34(16), 3726–3732 (2016)

    Article  ADS  Google Scholar 

  • Eskalen, H., Özgan, S., Alver, Ü., Kerl, S.: Electro-Optical properties of liquid crystals composite with Zinc Oxide Nanoparticle. J. Acta Phys. Polonica A 127(3), 756–760 (2015)

    Article  Google Scholar 

  • Gibbs, H.M.: Optical Bistability: Controlling Light with Light. Academic Press, New York (1995)

    Google Scholar 

  • Goh, X.M., Lin, L., Roberts, A.: Planar focusing elements using spatially varying near-resonant aperture arrays. Opt. Express 18(11), 11683–11688 (2010)

    Article  ADS  Google Scholar 

  • Harm, W., Roider, C., Jesacher, A., Bernet, S., Ritsch-Marte, M.: Dispersion tuning with a varifocal diffractive-refractive hybrid lens. Opt. Express 22(5), 5260–5269 (2014)

    Article  ADS  Google Scholar 

  • Hranilovic, S., Kschischang, F.R.: Optical intensity-modulated direct detection channels, signal space and lattice codes. IEEE Trans. Inf. Theory 49(6), 1385–1399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Jeong, Y., Bae, S., Oh, K.: All fiber N × N fused tapered plastic optical fiber (POF) power splitters for photodynamic therapy applications. Curr. Appl. Phys. 9(4), e273–e275 (2009)

    Article  ADS  Google Scholar 

  • Jia, S., Wu, Y., Wang, X., Wang, N.: A subwavelength focusing structure composite of nanoscale metallic slits array with patterned dielectric substrate. IEEE Photonics 6(1), 1–8 (2014)

    Article  Google Scholar 

  • Lin, H.C., Chen, M.S., Chen, Y.H.: A review of electrically tunable focusing liquid crystal lenses. Trans. Electr. Electron. Mater. 12(6), 234–240 (2011)

    Article  Google Scholar 

  • Ma, C., Aguinaldo, R., Liu, Z.: Advances in the hyperlens. Chin. Sci. Bull. 55(24), 2618–2624 (2010)

    Article  Google Scholar 

  • Matoba, O., Javidi, B.: Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Opt. Lett. 24(11), 762–764 (1999)

    Article  ADS  Google Scholar 

  • Maurer, C., Jesacher, A., Bernet, S., Ritsch-Marte, M.: What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 5(1), 81–101 (2011)

    Article  ADS  Google Scholar 

  • Obayya, S.S.A., Hameed, M.F.O., Areed, N.F.F.: Computational liquid crystal photonics: fundamentals, modelling and applications. Wiley, Chichester (2016)

    Book  Google Scholar 

  • Papaioannou, M., Plum, E., Rogers, E.T., Zheludev, N.I.: All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface. Light Sci. Appl. 7(3), 17157 (2018)

    Article  Google Scholar 

  • Ray, S.: Applied Photographic Optics: Lenses and Optical Systems for Photography, Film, Video and Electronic Imaging, 3rd edn. Focal Press, Oxford (2002)

    Google Scholar 

  • Salian, P.P., Prabhu, S., Amin, P., Naik, S.K., Parashuram M.K.: Visible Light Communication. India Educators’ Conference (TIIEC), https://doi.org/10.1109/tiiec.2013.74, 4–6 April (2013)

  • Steinmanna, P., Weaver, J.M.R.: Fabrication of sub-5 nm gaps between metallic electrodes using conventional lithographic techniques. J. Vac. Sci. Technol. B 22(6), 3178–3181 (2004)

    Article  Google Scholar 

  • Sun, H., Zhu, Y., Gao, B., Wang, P., Yu, Y.: Polarization-dependent quasi-far-field superfocusing strategy of nanoring-based plasmonic lenses. Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-017-2154-1

    Google Scholar 

  • Takeda, M., Tanimoto, T., Inoue, T., Aizawa, K.: Plasmonic lens for ultraviolet wavelength. Jpn. J. Appl. Phys. (2016). https://doi.org/10.7567/JJAP.55.09SD03

    Google Scholar 

  • Takeda, M., Tsuchiyama, A., Okada, M., Matsui, S., Inoue, T., Aizawa, K.: Improvement of focusing characteristics of a surface plasmonic lens for UV wavelength. Jpn. J. Appl. Phys. (2017). https://doi.org/10.7567/JJAP.56.09NC02

    Google Scholar 

  • Towghi, N., Javidi, B., Luo, Z.: Fully phase encrypted image processor. J. OSA A 16(8), 1915–1927 (1999)

    ADS  Google Scholar 

  • Van de Nes, A.S., Braat, J.J., Pereira, S.F.: High-density optical data storage. Rep. Prog. Phys. 69(8), 2323 (2006)

    Article  ADS  Google Scholar 

  • Verslegers, L., Catrysse, P.B., Yu, Z., White, J.S., Barnard, E.S., Brongersma, M.L., Fan, S.: Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9(1), 235–238 (2008)

    Article  ADS  Google Scholar 

  • Wang, H., Deng, Y., He, J., Gao, P., Yao, N., Wang, C., Zhao, Z., Wang, J., Jiang, B., Luo, X.: Subwavelength light focusing of plasmonic lens with dielectric filled nanoslits structures. J. Nanophotonics (2014). https://doi.org/10.1117/1.JNP.8.083079

    Google Scholar 

  • Yu, Y., Zappe, H.: Effect of lens size on the focusing performance of plasmonic lenses and suggestion for the design. Opt. Express 19(10), 9439–9444 (2011)

    ADS  Google Scholar 

  • Zhao, Y., Lin, S.S., Nawaz, A.A., Kiraly, B., Hao, Q., Liu, Y., Huang, T.J.: Beam bending via plasmonic lenses. Opt. Express 18(22), 23458–23465 (2010)

    Article  ADS  Google Scholar 

  • Zhu, Y., Yuan, W., Yu, Y., Wang, P.: Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits. Plasmonics 11(6), 1543–1548 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah S. A. Obayya.

Ethics declarations

Conflict of interest

Authors would like to clarify that there is no sources of funding, and no potential conflicts of interest (financial or non-financial).

Ethical standard

The authors would like to ensure the objectivity and transparency in the submitted research paper. Additionally, the authors would like to ensure that accepted principles of ethical and professional conduct have been followed through the preparation of the proposed paper.

Human and animal rights statement

Moreover, the submitter research does not involve human participants, or animals.

Additional information

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling, OQTNM 2017.

Guest Edited by Bastiaan Pieter de Hon, Sander Johannes Floris, Manfred Hammer, Dirk Schulz, Anne-Laure Fehrembach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areed, N.F.F., El-Baz, M., Heikal, A.M. et al. Intensity modulation lens on the basis of nano-scale golden rods and liquid crystal layer. Opt Quant Electron 50, 240 (2018). https://doi.org/10.1007/s11082-018-1501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1501-5

Keywords

Navigation