BER analysis and capacity evaluation of FSO system using hybrid subcarrier intensity modulation with receiver spatial diversity over log-normal and gamma–gamma channel model

  • Rajat Kumar GiriEmail author
  • Bijayananda Patnaik


In this work, the performance of free space optical system is evaluated in terms of bit error rate (BER) and capacity using PPM–BPSK–SIM (hybrid-SIM) modulation scheme. Addition to that, we have applied spatial diversity technique for the proposed system. We have calculated the BER and the capacity at various atmospheric turbulence levels over the log-normal and gamma–gamma channel models. The analysis has been carried out at different signal-to-noise-ratio (SNR) values and link distances. The simulation results show that hybrid-SIM modulation scheme achieves better BER performance than BPSK–SIM scheme in both the channel models; furthermore, the BER performance gets improved significantly by spatial diversity technique.


Subcarrier-intensity-modulation (SIM) Free-space-optics (FSO) Signal-to-noise-ratio (SNR) Capacity Scintillation Bit error rate (BER) 


  1. Adamchik, V., Marichev, O.: The algorithm for calculating integrals of hypergeometric type functions and its realization in reduce system. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 212–224. ACM (1990)Google Scholar
  2. Bayaki, E., Schober, R., Mallik, R.K.: Performance analysis of mimo free-space optical systems in gamma–gamma fading. IEEE Trans. Commun. 57(11), 3415–3424 (2009)CrossRefGoogle Scholar
  3. Gappmair, W., Hranilovic, S., Leitgeb, E.: Performance of PPM on terrestrial FSO links with turbulence and pointing errors. IEEE Commun. Lett. 14(5), 468–470 (2010)CrossRefGoogle Scholar
  4. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling with Matlab®. CRC Press, Boca Raton (2012)Google Scholar
  5. Ghassemlooy, Z., Arnon, S., Uysal, M., Xu, Z., Cheng, J.: Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 33(9), 1738–1749 (2015)CrossRefGoogle Scholar
  6. Giri, R.K., Patnaik, B.: Bit error rate performance analysis of hybrid subcarrier intensity modulation-based FSO with spatial diversity in various weather conditions. J. Opt. Commun. (2017). Google Scholar
  7. Gopal, P., Jain, V.K., Kar, S.: Performance improvement of FSO satellite downlink using aperture averaging and receiver spatial diversity. IET Optoelectron. 10(4), 119–127 (2016)CrossRefGoogle Scholar
  8. Kaur, P., Jain, V.K., Kar, S.: Effect of atmospheric conditions and aperture averaging on capacity of free space optical links. Opt. Quant. Electron. 46(9), 1139–1148 (2014)CrossRefGoogle Scholar
  9. Kaur, P., Jain, V.K., Kar, S.: Performance analysis of free space optical links using multi-input multi-output and aperture averaging in presence of turbulence and various weather conditions. IET Commun. 9(8), 1104–1109 (2015)CrossRefGoogle Scholar
  10. Kaushik, R., Khandelwal, V., Jain, R.C.: Effect of aperture averaging and spatial diversity on capacity of optical wireless communication systems over lognormal channels. Radioelectr. Commun. Syst. 59(12), 527–535 (2016)CrossRefGoogle Scholar
  11. Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)CrossRefGoogle Scholar
  12. Laourine, A., Stephenne, A., Affes, S.: On the capacity of log-normal fading channels. IEEE Trans. Commun. (2009). Google Scholar
  13. Liu, H., Liao, R., Wei, Z., Hou, Z., Qiao, Y.: Ber analysis of a hybrid modulation scheme based on PPM and MSK subcarrier intensity modulation. IEEE Photonics J. 7(4), 1–10 (2015)Google Scholar
  14. Luong, D.A., Thang, T.C., Pham, A.T.: Effect of avalanche photodiode and thermal noises on the performance of binary phase-shift keying-subcarrier-intensity modulation/free-space optical systems over turbulence channels. IET Commun. 7(8), 738–744 (2013)CrossRefGoogle Scholar
  15. Ma, J., Jiang, Y., Yu, S., Tan, L., Du, W.: Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications. Opt. Commun. 283(2), 237–242 (2010)ADSCrossRefGoogle Scholar
  16. Majumdar, A.K.: Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. Rep. 2, 345–396 (2005)CrossRefGoogle Scholar
  17. Navidpour, S.M., Uysal, M., Kavehrad, M.: BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 6(8), 2813–2819 (2007)CrossRefGoogle Scholar
  18. Popoola, W.O., Ghassemlooy, Z.: BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. J. Lightwave Technol. 27(8), 967–973 (2009)ADSCrossRefGoogle Scholar
  19. Song, X., Cheng, J.: Subcarrier intensity modulated mimo optical communications in atmospheric turbulence. J. Opt. Commun. Netw. 5(9), 1001–1009 (2013)CrossRefGoogle Scholar
  20. Viswanath, A., Jain, V.K., Kar, S.: Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes. IET Commun. 9(18), 2253–2258 (2015)CrossRefGoogle Scholar
  21. Vu, B.T., Dang, N.T., Thang, T.C., Pham, A.T.: Bit error rate analysis of rectangular QAM/FSO systems using an APD receiver over atmospheric turbulence channels. J. Opt. Commun. Netw. 5(5), 437–446 (2013)CrossRefGoogle Scholar
  22. Yi, X., Yao, M., Wang, X.: Mimo FSO communication using subcarrier intensity modulation over double generalized gamma fading. Opt. Commun. 382, 64–72 (2017)ADSCrossRefGoogle Scholar
  23. Zhu, X., Kahn, J.M.: Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50(8), 1293–1300 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Institute of Information TechnologyBhubaneswarIndia

Personalised recommendations