Skip to main content
Log in

Optical rectification coefficient in an oxide quantum dot with different confinement potentials

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

A Correction to this article was published on 31 October 2018

This article has been updated

Abstract

Exciton binding energies, oscillator strength, optical rectification coefficients and second harmonic generation are investigated using three different confinement potentials in a CdO/ZnO core/shell quantum dot. The bare potential, Smorodinsky–Winternitz potential and Woods–Saxon potential are employed in the Hamiltonian. The position dependent dielectric function is used. The electronic properties are found using variational formulism within a single band effective mass approximation whereas the optic properties are investigated using compact density matrix approach. The results show that different confinement potentials lead to significant changes in the coefficients of optical rectification and the second harmonic generations and the effects of confined potentials are more pronounced in the strong confinement region. The resonant peaks in the nonlinear optical rectification coefficients and second harmonic generation are blue shifted to larger photon energies with the various confined potentials and the results are enhanced using Smorodinsky–Winternitz potential. The obtained results can be applied for the potential applications for fabricating opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 31 October 2018

    In the original publication of the article, the third author name was spelled out incorrectly and missed to include as co-corresponding author. The correct author group is given in this correction.

References

  • Agbo, P.E., Nwofe, P.A.: Comprehensive studies on the optical properties of ZnO-core shell thin films. J. Nanotechnol. Adv. Mater. 3(2), 63–97 (2015)

    Google Scholar 

  • Baskoutas, S., Paspalakis, E., Terzis, A.F.: Electronic structure and non linear optical rectification in a quantum dot: effects of impurities and external electric filed. Phys. Rev. B 74, 153306–153307 (2006)

    Article  ADS  Google Scholar 

  • Bejan, D.: Impurity-related nonlinear optical rectification in double quantum dot under electric field. Phys. Lett. A 380, 3836–3842 (2016)

    Article  ADS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics. Academic Press, San Diego (2003)

    Google Scholar 

  • Çetinörgü, E., Gümüş, C., Esen, R.: Photoreflectance characteristic of chemical–bath deposited-CdS-layer in Cu (In, Ga) So2 thin-film solar cell. Thin Solid Films 515(4), 1688–1693 (2006)

    Article  ADS  Google Scholar 

  • Chena, B., Guo, K.-X., Wang, R.-Z., Zheng, Y.-B., Li, B.: Nonlinear optical rectification in asymmetric double triangular quantum wells. Eur. Phys. J. B 66, 227–233 (2008)

    Article  ADS  Google Scholar 

  • Cheng-hua, S., Cheng-jun, W., Ping-gen, C., Qing-bin, Z., Bo, Y., Bin, L., Gao-yao, W., Yun, L.I.: Growth and optical properties of core/shell structure CdO/ZnO quantum dots. J. Zhejiang Univ. Tech. 03, 94–99 (2014)

    Google Scholar 

  • Chuang, S.L., Schmitt-Rink, S., Greene, B.I., Saeta, P.N., Levi, A.F.J.: Optical rectification at semiconductor surfaces. Phys. Rev. Lett. 68(1), 102–105 (1992)

    Article  ADS  Google Scholar 

  • Csta, L.S., Prudente, F.V., Acioli, P.H., Soares Neto, J.J., Vianna, J.D.M.: A study of confined quantum systems using the Woods–Saxon potential. J. Phys. B At. Mol. Opt. Phys. 32, 2461–2470 (1999)

    Article  ADS  Google Scholar 

  • Duque, C.M., Mora-Ramos, M.E., Duque, C.A.: Hydrostatic pressure and electric field effects and nonlinear optical rectification of confined excitons in spherical quantum dots. Superlatt. Microstruct. 49(3), 264–268 (2011)

    Article  ADS  Google Scholar 

  • El Kadadra, A., Abouelaoualim, D.: Electric field effect on the nonlinear optical rectification properties in III–V nitrides semi-parabolic quantum well. J. Nonlinear Opt. Phys. Mater. 23(1), 1450002–1450011 (2014)

    Article  Google Scholar 

  • Ferro, R., Rodríguez, J.A., Jiménez, I., Cirera, A., Cerdà, J., Morante, J.R.: Gas sensing properties of sprayed films of (CdO)x(ZnO)1−x mixed oxide. IEEE Sens. 5, 48–52 (2005)

    Article  Google Scholar 

  • Flórez, J., Camacho, Á.: Excitonic effects on the second-order non linear optical properties of semi-spherical quantum dots. Nanoscale Res. Lett. 6, 268–274 (2011)

    Article  ADS  Google Scholar 

  • Hassanabadi, H., Liu, G., Lu, L.: Optical absorptions of an excition in a quantum ring: effect of the repulsive core. Sol. Stat. Commun. 152(18), 1761–1766 (2012)

    Article  ADS  Google Scholar 

  • Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501–126530 (2009)

    Article  ADS  Google Scholar 

  • Jasmine, P.C.L., Peter, A.J., Lee, C.W.: Electric field induced optical gain of a hydrogenic impurity in a Cd0.8Zn0.2Se/ZnSe parabolic quantum dot. Chem. Phys. 452, 452–454 (2015)

    Google Scholar 

  • Jin, M., Xie, W.: Simultaneous effects of hydrostatic pressure and temperature and effect of spin–orbit interaction on the third harmonic generation. Superlatt. Microstruct. 73, 330–341 (2014)

    Article  ADS  Google Scholar 

  • Koga, T., Nitta, J., Takayanagi, H., Datta, S.: Spin-filter device based on the Rashba effect using a non-magnetic resonant tunneling diode. Phys. Rev. Lett. 88, 126601–126604 (2002)

    Article  ADS  Google Scholar 

  • Kramer, B.: Advances in Solid State Physics. Springer, Berlin (2002)

    Book  Google Scholar 

  • Liu, G., Guo, K., Zhang, Z.: Non-linear optical reflection in spherical dome semiconductor nanoshells. Physica B 503, 81–85 (2016)

    Article  ADS  Google Scholar 

  • Llorens, J.M., Trallero-Giner, C., Garcia-Cristobal, A., Cantarero, A.: Electronic structures of a quantum ring in a lateral electric field. Phys. Rev. B 64, 035309–035315 (2001)

    Article  ADS  Google Scholar 

  • Lu, L., Xie, W., Hassanabadi, H.: The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods–Saxon potential. J. Lumin. 131(12), 2538–2543 (2011)

    Article  Google Scholar 

  • Makino, T., Segawa, Y., Kawasaki, M., Koinuma, H.: Optical properties of Zno: Al epilayers: observation of room temperature many body absorption-edge singularity. Phys. Rev. B 65, 121201–121204 (2002)

    Article  ADS  Google Scholar 

  • Minimala, N.S., Peter, A.J., Yoo, C.K.: Electronic of optical properties of exciton in wurtzite GaN/Ga0.8A10.2N and ZnO/Zn0.607Mg0.3993O strained quantum dots. J. Comput. Theor. Nanosci. 11, 257–264 (2014)

    Article  Google Scholar 

  • Morkoç, H., Özgür, Ü.: Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley, Weinheim (2008)

    Google Scholar 

  • Niculescu, E.C., Stan, C., Bejan, D., Cartoaje, C.: Impurity and eccentricity effects on the non linear optical rectification in a quantum ring under lateral electric fields. J. Appl. Phys. 122, 144301–144313 (2017)

    Article  ADS  Google Scholar 

  • Osuwa, J.C., Onyejiuwa, G.I.: Structural and electrical properties of annealed nickel oxide (NiO) thin films prepared by chemical bath deposition. J. Ovovic Res. 9(1), 9–15 (2013)

    Google Scholar 

  • Rosencher, E., Bois, P., Nagle, J.: Compositionally asymmetrical multiquantum wells: quasi-molecules for giant optical nonlinearities in the infrared (9–11 um). SPIE Proc. 138, 1273–1277 (1990)

    ADS  Google Scholar 

  • Sangeetha, R., Peter, A.J., Yoo, C.K.: Effect of strain on the band alignment and the optical gain of a CdTe/ZnTe quantum dot. Can. J. Phys. 92, 380–388 (2014)

    Article  ADS  Google Scholar 

  • Saravanamoorthy, S.N., Peter, A.J., Lee, C.W.: Optical properties of type-I/PbSe/CdSe/shell quantum dot. Physica B 101, 466–467 (2015)

    Google Scholar 

  • Senthil, K., Tak, Y., Seol, M., Yong, K.: Synthesis and characterization of Zno nanowire-CdO composite. Nanoscale Res. Lett. 4, 1329–1334 (2009)

    Article  ADS  Google Scholar 

  • Shao, S., Guo, K.-X., Zhang, Z.-H., Li, N., Peng, C.: Studies of Second- harmonic generation in cubical quantum dots with applied electric field. Physica B 406(3), 393–396 (2011)

    Article  ADS  Google Scholar 

  • Shen, Y.R.: The Principles of Nonlinear Optics. Wiley, New York (1984)

    Google Scholar 

  • Xie, W.: An exciton in a disc-like quantum dot (QD) with the parabolic confinement, under applied. J. Lumin. 131(5), 943–946 (2011)

    Article  Google Scholar 

  • Yao, T., Hong, S.-K.: Oxide and Nitride Semiconductors: Processing, Properties, and Applications Advances in Materials Research, vol. 12. Springer, Berlin (2009)

    Book  Google Scholar 

  • Zhang, L., Xie, H.J.: Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells. Phys. Rev. B 68, 235315–235316 (2003)

    Article  ADS  Google Scholar 

  • Zhang, Z.-H., Guo, K.-X., Chen, B., Wang, R.-Z., Kang, M.-W.: Energetics and electronic properties of Mg/Tm H16(TM = SC, Ti, V, Zr, Nb) An ab inito study. Physica B 404(16), 2332–2335 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. John Peter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, A.J., Karthikeyan, N. & Woo, C.W. Optical rectification coefficient in an oxide quantum dot with different confinement potentials. Opt Quant Electron 50, 250 (2018). https://doi.org/10.1007/s11082-018-1497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1497-x

Keywords

Navigation