Early skin cancer detection sensor based on photonic band gap and graphene load at terahertz regime

  • Shabnam Azizi
  • Shohreh Nouri-Novin
  • Mir Mohsen Seyedsharbaty
  • Ferdows B. Zarrabi
Article
  • 40 Downloads

Abstract

Microwave, THz, and optical systems have been developed rapidly for biological detection and imaging in various applications such as skin cancer detection. In this paper, we have suggested special THz sensor based on split ring resonator to making a hot spot for electric field enhancement. In addition, we have utilized photonic band gap (PBG) structure to increase the electric field in the hot spot and we have revealed that this technique lead to enhance the maxima of the electric field more than 12% at the hot spot and the reflection coefficient (S21) value from − 22 to − 35 dB. In other words, we have tried to detect the cancer tissue based on reflection method and related frequency shift. Therefore, the sensor is studied in the existance and absence of the sample where the frequency shift is noticed as a detection factor. At last, the graphene loads are added to the structure and the maxima of the electric field are increased up to 25.3% for 1.96 THz at the hot spot in contrast to basic structure with the reconfigurable characteristic. The parametric studies are noticed to realizing the distortion effect on resonances and electric field.

Keywords

THz Sensor Photonic band gap (PBG) Graphene Resonator 

References

  1. Afroozeh, A., Innate, K., Ali, J., Yupapin, P.P.: THz frequency generation using Gaussian pulse for medical applications. Optik Int. J. Light Electron Opt. 124(5), 416–419 (2013)CrossRefGoogle Scholar
  2. Arezoomand, A.S., Zarrabi, F.B., Heydari, S., Gandji, N.P.: Independent polarization and multi-band THz absorber base on Jerusalem cross. Opt. Commun. 352, 121–126 (2015)ADSCrossRefGoogle Scholar
  3. Catapano, I, Soldovieri, F.: A data processing chain for terahertz imaging and its use in artwork diagnostics. J. Infrared Millim. Terahertz Waves 38(4), 518–530 (2017)CrossRefGoogle Scholar
  4. Choi, Y., Choi, J.-W., Cioffi, J.M.: A geometric-statistic channel model for THz indoor communications. J Infrared MillimTerahertz Waves 34(7–8), 456–467 (2013)CrossRefGoogle Scholar
  5. Destic, F., Bouvet, C.: Impact damages detection on composite materials by THz imaging. Case Stud. Nondestruct. Test. Eval. 6, 53–62 (2016)CrossRefGoogle Scholar
  6. Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., Abbott, D.: High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 14(5), 1345–1351 (2014)CrossRefGoogle Scholar
  7. Férachou, D., Humbert, G., Le Floch, J.-M., Aubourg, M., Auguste, J.-L., Tobar, M.E., Cros, D., Blondy, J.-M.: Compact hollow-core photonic band gap resonator with optimised metallic cavity at microwave frequencies. Electron. Lett. 47(14), 805–807 (2011)CrossRefGoogle Scholar
  8. Garcia-Banos, B., Cuesta-Soto, F., Griol, A., Catala-Civera, J.M., Pitarch, J.: Enhancement of sensitivity of microwave planar sensors with EBG structures. IEEE Sens. J. 6(6), 1518–1522 (2006)CrossRefGoogle Scholar
  9. Jafari, F.S., Ahmadi-Shokouh, J.: Industrial liquid characterization enhancement using microwave sensor equipped with electronic band gap structure. AEU Int. J. Electron. Commun. 82, 152–159 (2017)CrossRefGoogle Scholar
  10. Jafari, F.S., Ahmadi-Shokouh, J.: Frequency-selective surface to determine permittivity of industrial oil and effect of nanoparticle addition in x-band. J. Electron. Mater. 47(2), 1397–1404 (2018)ADSCrossRefGoogle Scholar
  11. Jamilan, S., Semouchkin, G., Gandji, N.P., Semouchkina E.: Spatial dispersion of index components required for building invisibility cloak medium from photonic crystals. J. Opt (2018)Google Scholar
  12. Meyne, N., Cammin, C., Jacob, A. F.: Accuracy enhancement of a split-ring resonator liquid sensor using dielectric resonator coupling. In: 2014 20th International Conference on Microwaves, Radar, and Wireless Communication (MIKON), pp. 1–4. IEEE (2014)Google Scholar
  13. Nguyen, T.K., Thi, A.H., Han, H., Park, I.: Numerical study of self-complementary antenna characteristics on substrate lenses at terahertz frequency. J. Infrared Millim. Terahertz Waves 33(11), 1123–1137 (2012)CrossRefGoogle Scholar
  14. Pickwell, E., Cole, B.E., Fitzgerald, A.J., Wallace, V.P., Pepper, M.: Simulation of terahertz pulse propagation in biological systems. Appl. Phys. Lett. 84(12), 2190–2192 (2004)ADSCrossRefGoogle Scholar
  15. Radoi, A., Dragoman, M., Dragoman, D.: Plasmonic ambient light sensing with MoS 2-graphene heterostructures. Physica E 85, 164–168 (2017)ADSCrossRefGoogle Scholar
  16. Rahman, A., Rahman, A.K., Rao, B.: Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron. 82, 64–70 (2016)CrossRefGoogle Scholar
  17. Sadeghzadeh, R.A., Zarrabi, F.B.: Metamaterial Fabry–Perot cavity implementation for gain and bandwidth enhancement of THz dipole antenna. Optik Int. J. Light Electron Opt. 127(13), 5181–5185 (2016)CrossRefGoogle Scholar
  18. Savo, S., Shrekenhamer, D., Padilla, W.J.: Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv. Opt. Mater. 2(3), 275–279 (2014)CrossRefGoogle Scholar
  19. Seddon, A.B.: Mid-infrared (IR)—a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Physica Status Solidi (b) 250(5), 1020–1027 (2013)ADSCrossRefGoogle Scholar
  20. Semouchkina, E., Duan, R., Gandji, N.P., Jamilan, S., Semouchkin, G., Pandey, R.: Superluminal media formed by photonic crystals for transformation optics-based invisibility cloaks. J. Opt. 18(4), 044007 (2016)ADSCrossRefGoogle Scholar
  21. Seyedsharbaty, M.M., Sadeghzadeh, R.A.: Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Opt. Quant. Electron. 49(6), 221 (2017)CrossRefGoogle Scholar
  22. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)ADSCrossRefGoogle Scholar
  23. Wallace, V.P., Fitzgerald, A.J., Pickwell, E., Pye, R.J., Taday, P.F., Flanagan, N., Ha, T.: Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl. Spectrosc. 60(10), 1127–1133 (2006)ADSCrossRefGoogle Scholar
  24. Woodward, R.M., Cole, B.E., Wallace, V.P., Pye, R.J., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47(21), 3853 (2002)CrossRefGoogle Scholar
  25. Yang, X., Zhao, X., Yang, K., Liu, Y., Liu, Y., Fu, W., Luo, Y.: Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)CrossRefGoogle Scholar
  26. Yin, X.-X., Zhang, Y., Cao, J., Wu, J.-L., Hadjiloucas, S.: Exploring the complementarity of THz pulse imaging and DCE-MRIs: toward a unified multi-channel classification and a deep learning framework. Comput. Methods Programs Biomed. 137, 87–114 (2016)CrossRefGoogle Scholar
  27. Yu, C., Fan, S., Sun, Y., Pickwell-MacPherson, E.: The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2(1), 33–45 (2012)Google Scholar
  28. Zarifi, M.H., Rahimi, M., Daneshmand, M., Thundat, T.: Microwave ring resonator-based non-contact interface sensor for oil sands applications. Sens. Actuators B Chem. 224, 632–639 (2016)CrossRefGoogle Scholar
  29. Zarrabi, F.B., Naser-Moghadasi, M., Heydari, S., Maleki, M., Arezomand, A.S.: Cross-slot nano-antenna with graphene coat for bio-sensing application. Opt. Commun. 371, 34–39 (2016)ADSCrossRefGoogle Scholar
  30. Zarrabi, F.B., Seyedsharbaty, M.M., Ahmed, Z., Arezoomand, A.S., Heydari, S.: Wide band yagi antenna for terahertz application with graphene control. Optik Int. J. Light Electron Opt. 140, 866–872 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shabnam Azizi
    • 1
  • Shohreh Nouri-Novin
    • 1
  • Mir Mohsen Seyedsharbaty
    • 2
  • Ferdows B. Zarrabi
    • 2
  1. 1.Faculty of EngineeringImam Khomeini International University (IKIU)QazvinIran
  2. 2.Faculty of Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations