Skip to main content
Log in

Dispersive optical power splitter: assessment through time domain techniques

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A comparative study has been performed between the finite difference time domain technique and the time domain beam propagation method (TD-BPM) while assessing the ultra short pulsed beam propagation inside dispersive power splitter. The dispersive GaAs material, used in the device, is modeled by Lorentzian dispersion relation that satisfies the refractive index of the material at a certain wavelength and shows a strong dispersion over a wide wavelength range. A smarter moving window technique is needed to be applied rather than at pulse’s group velocity for the TD-BPM, especially for bifurcated opto-electronic devices at the ultra short pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adachi, S.: Properties of semiconductor alloys, group-IV, III–V, and II–VI semiconductors, p. 317. Wiley, New York (2009)

    Book  Google Scholar 

  • Akond, M.S., AlWadie, A., Masoudi, H.M.: Modeling femtosecond pulses in optical power splitter using time domain techniques. Opt. Quant. Electron. (2016). https://doi.org/10.1007/s11082-015-0354-4

    Google Scholar 

  • Goorjian, P.M., Taflove, A.: Direct time integration of Maxwells equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons. Opt. Lett. 17, 180–182 (1992)

    Article  ADS  Google Scholar 

  • Masoudi, H.: A novel nonparaxial time-domain beam-propagation method for modeling ultrashort pulses in optical structures. J. Lightwave Technol. 25, 3175–3184 (2007)

    Article  ADS  Google Scholar 

  • Masoudi, H., Akond, M.: Efficient iterative time-domain beam propagation methods for ultra short pulse propagation: analysis and assessment. J. Lightwave Technol. 29, 2475–2481 (2011)

    Article  ADS  Google Scholar 

  • Masoudi, H.M., AlSunaidi, M.A., Arnold, J.M.: Efficient time-domain beam propagation method for modeling integrated optical devices. J. Lightwave Technol. 19–5, 759–771 (2001)

    Article  ADS  Google Scholar 

  • Milinazzo, F.A., Zala, C.A., Brooke, G.H.: Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. 101, 760–766 (1997)

    Article  ADS  Google Scholar 

  • Mitchell, A.R., Griffiths, D.F.: The Finite Difference Method in Partial Difference Equations, pp. 198–199. Wiley, Hoboken (1980)

    MATH  Google Scholar 

  • Tan, E.L.: Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods. IEEE Trans. Antennas Propag. 56(1), 170–177 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tao, S.H., Fang, Q., Song, J.F., Yu, M.B., Lo, G.Q., Kwong, D.L.: Cascade wide-angle Y-junction 1\(\times\) 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator. Opt. Exp. 16, 21456–21461 (2008)

    Article  ADS  Google Scholar 

  • Teixeira, F.L.: Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 56(8), 2150–2166 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  ADS  MATH  Google Scholar 

  • Yu, Y., Chen, Z.: Towards the development of an unconditionally stable time-domain meshless method. IEEE Trans. Microw. Theory Tech. 58(3), 578–586 (2010)

    Article  ADS  Google Scholar 

  • Zheng, F., Chen, Z., Zhang, J.: Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE Trans. Microw. Theory Tech. 48–9, 1550–1558 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Najran University Research Project Number NU/ESCI/14/039. The author extend his acknowledgment to the center of scientific research, Najran University. Special thanks to Nurul Alam for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Akond.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akond, M.S. Dispersive optical power splitter: assessment through time domain techniques. Opt Quant Electron 50, 221 (2018). https://doi.org/10.1007/s11082-018-1492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1492-2

Keywords

Navigation