Photonic crystal with epsilon negative and double negative materials as an optical sensor

Abstract

Two ternary photonic crystals are proposed for sensing applications. The first one is composed of an air layer as an analyte sandwiched between two double negative material (DNM) layers whereas the second one consists of an air layer sandwiched between two epsilon negative material (ENM) layers. The transmission spectrum is studied for two different values of the refractive index of the analyte layer with ∆n = 0.01. A specific peak in the transmission spectrum is observed and the wavelength at which the peak occurs is determined. The wavelength shift due to any change in the index of the analyte layer is also determined. The effect of varying the parameters of the DNM and ENM on the sensitivity of the sensor is discussed. It is found that the sensitivity of the structure ENM/air/ENM is much greater than that of the structure DNM/air/DNM and it is estimated as 26 times of the sensitivity of the latter structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abadla, M., Taya, S.A.: Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal. Optik Int. J. Light Electron. Opt. 125, 1401–1405 (2014)

    Article  Google Scholar 

  2. Awasthi, S.K., Ojha, S.P.: Design of a tunable optical filter by using one-dimensional ternary photonic band gap material. Prog. Electromagn. Res. M 4, 117–132 (2008)

    Article  Google Scholar 

  3. Awasthi, S.K., Malaviya, U., Ojha, S.P.: Enhancement of omnidirectional total-reflection wavelength range by using one dimensional ternary photonic band gap material. J. Opt. Soc. Am. B 23, 2566–2571 (2006)

    ADS  Article  Google Scholar 

  4. Banerjee, A.: Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals. Prog. Electromagn. Res. PIER 89, 11–22 (2009a)

    Article  Google Scholar 

  5. Banerjee, A.: Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures. Prog. Electromagn. Res. Lett. 11, 129–137 (2009b)

    Article  Google Scholar 

  6. Densmore, A., Xu, D.X., Waldron, P., Janz, S., Cheben, P., Lapointe, J., et al.: A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photonics Technol. Lett. 18, 2520–2522 (2006)

    ADS  Article  Google Scholar 

  7. El-Agez, T.M., Taya, S.A.: Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors. Opt. Appl. 41, 89–95 (2011)

    Google Scholar 

  8. Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sensors Actuators B 54, 3–15 (1999)

    Article  Google Scholar 

  9. Horvath, R., Fricsovszky, G., Pap, E.: Application of the optical waveguide light mode spectroscopy to monitor lipid bilayer phase transition. Biosensors Bioelectron. 18, 415–428 (2003)

    Article  Google Scholar 

  10. Kriegel, I., Scotognella, F.: Disordered one-dimensional photonic structures composed by more than two materials with the same optical thickness. Opt. Commun. 338, 523–527 (2015)

    ADS  Article  Google Scholar 

  11. Kullab, H.M., Taya, S.A.: Peak type metal-clad waveguide sensor using negative index materials. Int. J. Electron. Commun. (AEÜ) 67, 905–992 (2013)

    Article  Google Scholar 

  12. Kullab, H.M., Taya, S.A.: Transverse magnetic peak type metal-clad optical waveguide sensor. Optik Int. J. Light Electron. Opt. 145, 97–100 (2014)

    Article  Google Scholar 

  13. Kullab, H.M., Taya, S.A., El-Agez, T.M.: Metal-clad waveguide sensor using a left-handed material as a core layer. J. Opt. Soc. Am. B 29, 959–964 (2012)

    ADS  Article  Google Scholar 

  14. Kullab, H.M., Qadoura, I.M., Taya, S.A.: Slab waveguide sensor with left-handed material core layer for detection an adlayer thickness and index. J. Nano Electron. Phys. 7, 2039–2041 (2015)

    Google Scholar 

  15. Kuswandi, B.: Simple optical fiber biosensor based on immobilized enzyme for monitoring of trace having metal ions. Anal. Bioanal. Chem. 376, 1104–1110 (2003)

    Article  Google Scholar 

  16. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in mettalic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    ADS  Article  Google Scholar 

  17. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2090 (1999)

    ADS  Article  Google Scholar 

  18. Ramanujam, N.R., Joseph Wilson, K.S.: Optical properties of silver nanocomposites and photonic band gap—pressure dependence. Opt. Commun. 368, 174–179 (2016)

    ADS  Article  Google Scholar 

  19. Sandhu, S., Fan, S., Yanik, M., Povinelli, M.: Advances in theory of photonic crystal. J. Light Wave Technol. 24, 4493–4501 (2006)

    ADS  Article  Google Scholar 

  20. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    ADS  Article  Google Scholar 

  21. Singh, V., Kumar, D.: Theoretical modeling of a metal-clad planar waveguide based biosensors for the detection of pseudomonas-like bacteria. Prog. Electromagn. Res. M 6, 167–184 (2009)

    Article  Google Scholar 

  22. Taya, S.A.: Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor. Opto-Electron. Rev. 22, 252–257 (2014)

    ADS  Article  Google Scholar 

  23. Taya, S.A.: Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide. Optik Int. J. Light Electron. Opt. 126, 1319–1323 (2015a)

    Article  Google Scholar 

  24. Taya, S.A.: P-polarized surface waves in a slab waveguide with left-handed material for sensing applications. J. Magn. Magn. Mater. 377, 281–285 (2015b)

    ADS  Article  Google Scholar 

  25. Taya, S.A.: Theoretical investigation of slab waveguide sensor using anisotropic metamaterials. Opt. Appl. 45, 405–417 (2015c)

    Google Scholar 

  26. Taya, S.A., Alamassi, D.M.: Reflection and transmission from left-handed material structures using Lorentz and Drude medium models. Opto-Electron. Rev. 23, 214–221 (2015)

    Article  Google Scholar 

  27. Taya, S.A., El-Agez, T.M.: Comparing optical sensing using slab waveguides and total internal reflection ellipsometry. Turk. J. Phys. 35, 31–36 (2011a)

    Google Scholar 

  28. Taya, S.A., El-Agez, T.M.: Reverse symmetry optical waveguide sensor using plasma substrate. J. Opt. 13, 075701-1–075701-6 (2011b)

    ADS  Article  Google Scholar 

  29. Taya, S.A., El-Agez, T.M.: Slab waveguide sensor based on amplified phase change due to multiple total internal reflections. Turk. J. Phys. 36, 67–76 (2012a)

    Google Scholar 

  30. Taya, S.A., El-Agez, T.M.: Optical sensors based on Fabry-Perot resonator and fringes of equal thickness structure. Optik Int. J. Light Electron. Opt. 123, 417–421 (2012b)

    Article  Google Scholar 

  31. Taya, S.A., Elwasife, K.Y.: Field profile of asymmetric slab waveguide structure with LHM layers. J. Nano Electron. Phys. 6, 02007-1–02007-5 (2014)

    Google Scholar 

  32. Taya, S.A., Kullab, H.M.: Optimization of transverse electric peak type metal-clad waveguide sensor using double negative materials. Appl. Phys. A 116, 1841–1846 (2014)

    ADS  Article  Google Scholar 

  33. Taya, S.A., Qadoura, I.M.: Guided modes in slab waveguides with negative index cladding and substrate. Optik 124, 1431–1436 (2013)

    ADS  Article  Google Scholar 

  34. Taya, S.A., El-Farram, E.J., El-Agez, T.M.: Goos Hänchen shift as a probe in evanescent slab waveguide sensors. Int. J. Electron. Commun. (AEÜ) 66, 204–210 (2012a)

    Article  Google Scholar 

  35. Taya, S.A., El-Farram, E.J., Abadla, M.M.: Symmetric multilayer slab waveguide structure with a negative index material: TM case. Optik 123, 2264–2268 (2012b)

    ADS  Article  Google Scholar 

  36. Taya, S.A., Kullab, H.M., Qadoura, I.M.: Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate. J. Opt. Soc. Am. B 30, 2008–2013 (2013a)

    ADS  Article  Google Scholar 

  37. Taya, S.A., Elwasife, K.Y., Kullab, H.M.: Dispersion properties of anisotropic-metamaterial slab waveguide structure. Opt. Appl. 43, 857–869 (2013b)

    Google Scholar 

  38. Taya, S.A., Jarada, A.A., Kullab, H.M.: Slab waveguide sensor utilizing left-handed material core and substrate layers. Optik Int. J. Light Electron. Opt. 127, 7732–7739 (2016)

    Article  Google Scholar 

  39. Taya, S.A., Shaheen, S.A., Alkanoo, A.A.: Photonic crystal as a refractometric sensor operated in reflection mode. Superlattices Microstruct. 101, 299–305 (2017a)

    ADS  Article  Google Scholar 

  40. Taya, S.A., Mahdi, S.S., Alkanoo, A.A., Qadoura, I.M.: Slab waveguide with conducting interfaces as an efficient optical sensor: TE case. J. Mod. Opt. 64, 836–843 (2017b)

    ADS  Article  Google Scholar 

  41. Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B 6, 209–220 (1989)

    ADS  Article  Google Scholar 

  42. Udd, E.: An overview of fiber optic sensors. Rev. Sci. Instrum. 66, 4015–4030 (1995)

    ADS  Article  Google Scholar 

  43. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and µ. Sov. Phys. Usp. 10, 509–514 (1968)

    ADS  Article  Google Scholar 

  44. Wahab, M., Saputera, Y., Wahyu, Y.: Design and realization of archimedes spiral antenna for Radar detector at 2–18 GHz frequencies. In: 19th Asia-Pacific Conference on Communications (APCC), Denpasar, Indonesia Aug. 29–31, pp. 304–309 (2013). https://doi.org/10.1109/apcc.2013.6765961

  45. Wu, C.J., Chung, Y.H., Yang, T.J., Syu, B.J.: Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal. Prog. Electromagn. Res. 102, 81–93 (2010)

    Article  Google Scholar 

  46. Zare, Z., Gharaati, A.: Investigation of band gap width in ternary 1D photonic crystal with left-handed layer. Acta Phys. Pol. A 125, 36–38 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sofyan A. Taya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taya, S.A., Alkanoo, A.A., Ramanujam, N.R. et al. Photonic crystal with epsilon negative and double negative materials as an optical sensor. Opt Quant Electron 50, 222 (2018). https://doi.org/10.1007/s11082-018-1487-z

Download citation

Keywords

  • Photonic crystal
  • Epsilon negative materials
  • Double negative materials
  • Sensor