Skip to main content
Log in

Photonic crystal with epsilon negative and double negative materials as an optical sensor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Two ternary photonic crystals are proposed for sensing applications. The first one is composed of an air layer as an analyte sandwiched between two double negative material (DNM) layers whereas the second one consists of an air layer sandwiched between two epsilon negative material (ENM) layers. The transmission spectrum is studied for two different values of the refractive index of the analyte layer with ∆n = 0.01. A specific peak in the transmission spectrum is observed and the wavelength at which the peak occurs is determined. The wavelength shift due to any change in the index of the analyte layer is also determined. The effect of varying the parameters of the DNM and ENM on the sensitivity of the sensor is discussed. It is found that the sensitivity of the structure ENM/air/ENM is much greater than that of the structure DNM/air/DNM and it is estimated as 26 times of the sensitivity of the latter structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abadla, M., Taya, S.A.: Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal. Optik Int. J. Light Electron. Opt. 125, 1401–1405 (2014)

    Article  Google Scholar 

  • Awasthi, S.K., Ojha, S.P.: Design of a tunable optical filter by using one-dimensional ternary photonic band gap material. Prog. Electromagn. Res. M 4, 117–132 (2008)

    Article  Google Scholar 

  • Awasthi, S.K., Malaviya, U., Ojha, S.P.: Enhancement of omnidirectional total-reflection wavelength range by using one dimensional ternary photonic band gap material. J. Opt. Soc. Am. B 23, 2566–2571 (2006)

    Article  ADS  Google Scholar 

  • Banerjee, A.: Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals. Prog. Electromagn. Res. PIER 89, 11–22 (2009a)

    Article  Google Scholar 

  • Banerjee, A.: Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures. Prog. Electromagn. Res. Lett. 11, 129–137 (2009b)

    Article  Google Scholar 

  • Densmore, A., Xu, D.X., Waldron, P., Janz, S., Cheben, P., Lapointe, J., et al.: A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photonics Technol. Lett. 18, 2520–2522 (2006)

    Article  ADS  Google Scholar 

  • El-Agez, T.M., Taya, S.A.: Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors. Opt. Appl. 41, 89–95 (2011)

    Google Scholar 

  • Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sensors Actuators B 54, 3–15 (1999)

    Article  Google Scholar 

  • Horvath, R., Fricsovszky, G., Pap, E.: Application of the optical waveguide light mode spectroscopy to monitor lipid bilayer phase transition. Biosensors Bioelectron. 18, 415–428 (2003)

    Article  Google Scholar 

  • Kriegel, I., Scotognella, F.: Disordered one-dimensional photonic structures composed by more than two materials with the same optical thickness. Opt. Commun. 338, 523–527 (2015)

    Article  ADS  Google Scholar 

  • Kullab, H.M., Taya, S.A.: Peak type metal-clad waveguide sensor using negative index materials. Int. J. Electron. Commun. (AEÜ) 67, 905–992 (2013)

    Article  Google Scholar 

  • Kullab, H.M., Taya, S.A.: Transverse magnetic peak type metal-clad optical waveguide sensor. Optik Int. J. Light Electron. Opt. 145, 97–100 (2014)

    Article  Google Scholar 

  • Kullab, H.M., Taya, S.A., El-Agez, T.M.: Metal-clad waveguide sensor using a left-handed material as a core layer. J. Opt. Soc. Am. B 29, 959–964 (2012)

    Article  ADS  Google Scholar 

  • Kullab, H.M., Qadoura, I.M., Taya, S.A.: Slab waveguide sensor with left-handed material core layer for detection an adlayer thickness and index. J. Nano Electron. Phys. 7, 2039–2041 (2015)

    Google Scholar 

  • Kuswandi, B.: Simple optical fiber biosensor based on immobilized enzyme for monitoring of trace having metal ions. Anal. Bioanal. Chem. 376, 1104–1110 (2003)

    Article  Google Scholar 

  • Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in mettalic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  ADS  Google Scholar 

  • Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2090 (1999)

    Article  ADS  Google Scholar 

  • Ramanujam, N.R., Joseph Wilson, K.S.: Optical properties of silver nanocomposites and photonic band gap—pressure dependence. Opt. Commun. 368, 174–179 (2016)

    Article  ADS  Google Scholar 

  • Sandhu, S., Fan, S., Yanik, M., Povinelli, M.: Advances in theory of photonic crystal. J. Light Wave Technol. 24, 4493–4501 (2006)

    Article  ADS  Google Scholar 

  • Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  • Singh, V., Kumar, D.: Theoretical modeling of a metal-clad planar waveguide based biosensors for the detection of pseudomonas-like bacteria. Prog. Electromagn. Res. M 6, 167–184 (2009)

    Article  Google Scholar 

  • Taya, S.A.: Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor. Opto-Electron. Rev. 22, 252–257 (2014)

    Article  ADS  Google Scholar 

  • Taya, S.A.: Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide. Optik Int. J. Light Electron. Opt. 126, 1319–1323 (2015a)

    Article  Google Scholar 

  • Taya, S.A.: P-polarized surface waves in a slab waveguide with left-handed material for sensing applications. J. Magn. Magn. Mater. 377, 281–285 (2015b)

    Article  ADS  Google Scholar 

  • Taya, S.A.: Theoretical investigation of slab waveguide sensor using anisotropic metamaterials. Opt. Appl. 45, 405–417 (2015c)

    Google Scholar 

  • Taya, S.A., Alamassi, D.M.: Reflection and transmission from left-handed material structures using Lorentz and Drude medium models. Opto-Electron. Rev. 23, 214–221 (2015)

    Article  Google Scholar 

  • Taya, S.A., El-Agez, T.M.: Comparing optical sensing using slab waveguides and total internal reflection ellipsometry. Turk. J. Phys. 35, 31–36 (2011a)

    Google Scholar 

  • Taya, S.A., El-Agez, T.M.: Reverse symmetry optical waveguide sensor using plasma substrate. J. Opt. 13, 075701-1–075701-6 (2011b)

    Article  ADS  Google Scholar 

  • Taya, S.A., El-Agez, T.M.: Slab waveguide sensor based on amplified phase change due to multiple total internal reflections. Turk. J. Phys. 36, 67–76 (2012a)

    Google Scholar 

  • Taya, S.A., El-Agez, T.M.: Optical sensors based on Fabry-Perot resonator and fringes of equal thickness structure. Optik Int. J. Light Electron. Opt. 123, 417–421 (2012b)

    Article  Google Scholar 

  • Taya, S.A., Elwasife, K.Y.: Field profile of asymmetric slab waveguide structure with LHM layers. J. Nano Electron. Phys. 6, 02007-1–02007-5 (2014)

    Google Scholar 

  • Taya, S.A., Kullab, H.M.: Optimization of transverse electric peak type metal-clad waveguide sensor using double negative materials. Appl. Phys. A 116, 1841–1846 (2014)

    Article  ADS  Google Scholar 

  • Taya, S.A., Qadoura, I.M.: Guided modes in slab waveguides with negative index cladding and substrate. Optik 124, 1431–1436 (2013)

    Article  ADS  Google Scholar 

  • Taya, S.A., El-Farram, E.J., El-Agez, T.M.: Goos Hänchen shift as a probe in evanescent slab waveguide sensors. Int. J. Electron. Commun. (AEÜ) 66, 204–210 (2012a)

    Article  Google Scholar 

  • Taya, S.A., El-Farram, E.J., Abadla, M.M.: Symmetric multilayer slab waveguide structure with a negative index material: TM case. Optik 123, 2264–2268 (2012b)

    Article  ADS  Google Scholar 

  • Taya, S.A., Kullab, H.M., Qadoura, I.M.: Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate. J. Opt. Soc. Am. B 30, 2008–2013 (2013a)

    Article  ADS  Google Scholar 

  • Taya, S.A., Elwasife, K.Y., Kullab, H.M.: Dispersion properties of anisotropic-metamaterial slab waveguide structure. Opt. Appl. 43, 857–869 (2013b)

    Google Scholar 

  • Taya, S.A., Jarada, A.A., Kullab, H.M.: Slab waveguide sensor utilizing left-handed material core and substrate layers. Optik Int. J. Light Electron. Opt. 127, 7732–7739 (2016)

    Article  Google Scholar 

  • Taya, S.A., Shaheen, S.A., Alkanoo, A.A.: Photonic crystal as a refractometric sensor operated in reflection mode. Superlattices Microstruct. 101, 299–305 (2017a)

    Article  ADS  Google Scholar 

  • Taya, S.A., Mahdi, S.S., Alkanoo, A.A., Qadoura, I.M.: Slab waveguide with conducting interfaces as an efficient optical sensor: TE case. J. Mod. Opt. 64, 836–843 (2017b)

    Article  ADS  Google Scholar 

  • Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B 6, 209–220 (1989)

    Article  ADS  Google Scholar 

  • Udd, E.: An overview of fiber optic sensors. Rev. Sci. Instrum. 66, 4015–4030 (1995)

    Article  ADS  Google Scholar 

  • Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and µ. Sov. Phys. Usp. 10, 509–514 (1968)

    Article  ADS  Google Scholar 

  • Wahab, M., Saputera, Y., Wahyu, Y.: Design and realization of archimedes spiral antenna for Radar detector at 2–18 GHz frequencies. In: 19th Asia-Pacific Conference on Communications (APCC), Denpasar, Indonesia Aug. 29–31, pp. 304–309 (2013). https://doi.org/10.1109/apcc.2013.6765961

  • Wu, C.J., Chung, Y.H., Yang, T.J., Syu, B.J.: Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal. Prog. Electromagn. Res. 102, 81–93 (2010)

    Article  Google Scholar 

  • Zare, Z., Gharaati, A.: Investigation of band gap width in ternary 1D photonic crystal with left-handed layer. Acta Phys. Pol. A 125, 36–38 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofyan A. Taya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taya, S.A., Alkanoo, A.A., Ramanujam, N.R. et al. Photonic crystal with epsilon negative and double negative materials as an optical sensor. Opt Quant Electron 50, 222 (2018). https://doi.org/10.1007/s11082-018-1487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1487-z

Keywords

Navigation