Skip to main content

Broad band metamaterial absorber based on wheel resonators with lumped elements for microwave energy harvesting

Abstract

A new metamaterial absorber structure is designed and characterized both numerically and experimentally for microwave energy harvesting applications. The proposed structure includes four wheel resonators with different dimensions, from which the overall response of the structure can then be obtained by summing all the overlapping frequency responses corresponding to each dimension. The essential operation frequency range of the wheels is selected in such a way that the energy used in wireless communications and found within the environment that we live is absorbed. The dimensions are obtained using parametric study and genetic algorithm to realize wideband absorption response. When the simulation and measurement results are taken into account, it is observed that the metamaterial absorber based harvester has potential to absorb and convert microwave energy with an absorption ratio lying within the range of 80 and 99% for the frequency band of 3–5.9 and 7.3–8 GHz. The conversion efficiency of the structure as a harvester is found to be greater than 0.8 in the interval of 2–5 GHz. Furthermore, the incident angle and polarization dependence of the wheel resonator based metamaterial absorber and harvester is also investigated and it is observed that the structure has both polarization and incident angle independent frequency response with good absorption characteristics in the entire working frequency band. Hence, the suggested design having good absorption, polarization and angle independent characteristics with wide bandwidth is a potential candidate for future energy harvester using wireless communication frequency band.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Álvarez, F.H., de Cos Gómez, M.E., Las-Heras, F.: A six-fold symmetric metamaterial absorber. Materials 8(4), 1590–1603 (2015)

    ADS  Article  Google Scholar 

  • Bağmancı, M., Karaaslan, M., Ünal, E., Akgol, O., Karadağ, F., Sabah, C.: Broad-band polarization-independent metamaterial absorber for solar energy harvesting applications. Physica E 90, 1–6 (2017)

    ADS  Article  Google Scholar 

  • Bakir, M., Delihacioglu, K., Karaaslan, M., Dincer, F., Sabah, C.: U-shaped frequency selective surfaces for single-and dual-band applications together with absorber and sensor configurations. IET Microwav. Antennas Propag. 10(3), 293–300 (2016)

    Article  Google Scholar 

  • Bhattacharyya, S., Ghosh, S., Chaurasiya, D., Srivastava, K.V.: Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl. Phys. A 118(1), 207–215 (2015)

    ADS  Article  Google Scholar 

  • Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Optical cloaking with metamaterials. Nat. Photonics 1(4), 224–227 (2007)

    ADS  Article  Google Scholar 

  • Chen, H.T.: Interference theory of metamaterial perfect absorbers. Opt. Express 20(7), 7165–7172 (2012)

    ADS  Article  Google Scholar 

  • Cheng, Y., Yang, H.: Design, simulation, and measurement of metamaterial absorber. J. Appl. Phys. 108(3), 034906-1–034906-4 (2010)

    ADS  Article  Google Scholar 

  • Cummer, S.A., Popa, B.I., Schurig, D., Smith, D.R., Pendry, J.: Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74(3), 036621-1–036621-5 (2006)

    ADS  Article  Google Scholar 

  • Dincer, F., Karaaslan, M., Colak, S., Tetik, E., Akgol, O., Altıntas, O., Sabah, C.: Multi-band polarization independent cylindrical metamaterial absorber and sensor application. Mod. Phys. Lett. B 30(08), 1650095-1–1650095-9 (2016)

    ADS  Google Scholar 

  • Esen, M., Ilhan, I., Karaaslan, M., Unal, E., Dincer, F., Sabah, C.: Electromagnetic absorbance properties of a textile material coated using filtered arc-physical vapor deposition method. J. Ind. Text. 45(2), 298–309 (2015)

    Article  Google Scholar 

  • Fan, Y., Zhang, H.C., Yin, J.Y., Xu, L., Nagarkoti, D.S., Hao, Y., Cui, T.J.: An active wideband and wide-angle electromagnetic absorber at microwave frequencies. IEEE Antennas Wirel. Propag. Lett. 15, 1913–1916 (2016)

    ADS  Article  Google Scholar 

  • Garcia, N., Nieto-Vesperinas, M.: Left-handed materials do not make a perfect lens. Phys. Rev. Lett. 88(20), 207403-1–207403-4 (2002)

    ADS  Article  Google Scholar 

  • Gunduz, O.T., Sabah, C.: Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application. J. Comput. Electron. 15(1), 228–238 (2016)

    Article  Google Scholar 

  • Jiang, W.X., Cui, T.J., Cheng, Q., Chin, J.Y., Yang, X.M., Liu, R., Smith, D.R.: Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces. Appl. Phys. Lett. 92(26), 264101-1–264101-3(2008)

    ADS  Google Scholar 

  • Karaaslan, M., Ünal, E., Tetik, E., Delihacıoğlu, K., Karadağ, F., Dincer, F.: Low profile antenna radiation enhancement with novel electromagnetic band gap structures. IET Microwav. Antennas Propag. 7(3), 215–221 (2013)

    Article  Google Scholar 

  • Karaaslan, M., Bağmancı, M., Ünal, E., Akgol, O., Sabah, C.: Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications. Opt. Commun. 392, 31–38 (2017)

    ADS  Article  Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402-1–207402-4 (2008)

    ADS  Article  Google Scholar 

  • Lezec, H.J., Dionne, J.A., Atwater, H.A.: Negative refraction at visible frequencies. Science 316(5823), 430–432 (2007)

    ADS  Article  Google Scholar 

  • Li, M., Yang, H.L., Hou, X.W., Tian, Y., Hou, D.Y.: Perfect metamaterial absorber with dual bands. Progr. Electromagn. Res. 108, 37–49 (2010)

    Article  Google Scholar 

  • Li, H., Yuan, L.H., Zhou, B., Shen, X.P., Cheng, Q., Cui, T.J.: Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 110(1), 014909-1–014909-8 (2011)

    ADS  Google Scholar 

  • Lv, J., Yan, B., Liu, M., Hu, X.: Simultaneous normal and parallel incidence planar left-handed metamaterial. Phys. Rev. E 80(2), 026605-1–026605-6 (2009)

    ADS  Article  Google Scholar 

  • Marwaha, A., Singh, G.R.: A review of metamaterials and its applications. Int. J. Eng. Trends Technol. (IJETT) 19(6), 305–310 (2015)

    Article  Google Scholar 

  • Moser, H.O., Casse, B.D.F., Wilhelmi, O., Saw, B.T.: Terahertz response of a micro-fabricated rod–split-ring-resonator electromagnetic metamaterial. Phys. Rev. Lett. 94(6), 063901-1–063901-4 (2005)

    ADS  Article  Google Scholar 

  • Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966-1–3966-4 (2000)

    ADS  Article  Google Scholar 

  • Rahm, M., Cummer, S.A., Schurig, D., Pendry, J.B., Smith, D.R.: Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys. Rev. Lett. 100(6), 063903-1–063903-4 (2008)

    ADS  Article  Google Scholar 

  • Sabah, C., Dincer, F., Karaaslan, M., Bakir, M., Unal, E., Akgol, O.: Biosensor applications of chiral metamaterials for marrowbone temperature sensing. J. Electromagn. Waves Appl. 29(17), 2393–2403 (2015)

    Article  Google Scholar 

  • Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)

    ADS  Article  Google Scholar 

  • Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    ADS  Article  Google Scholar 

  • Smith, D.R., Pendry, J.B., Wiltshire, M.C.: Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004)

    ADS  Article  Google Scholar 

  • Tao, H., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181–7188 (2008)

    ADS  Article  Google Scholar 

  • Tao, H., Bingham, C.M., Pilon, D., Fan, K., Strikwerda, A.C., Shrekenhamer, D., Averitt, R.D.: A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 43(22), 225102-1–225102-5 (2010)

    ADS  Article  Google Scholar 

  • Wiltshire, M.C.K., Pendry, J.B., Young, I.R., Larkman, D.J., Gilderdale, D.J., Hajnal, J.V.: Micro-structured magnetic materials for RF flux guides in magnetic resonance imaging. Science 291(5505), 849–851 (2001)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumali Sabah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karaaslan, M., Bağmancı, M., Ünal, E. et al. Broad band metamaterial absorber based on wheel resonators with lumped elements for microwave energy harvesting. Opt Quant Electron 50, 225 (2018). https://doi.org/10.1007/s11082-018-1484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1484-2

Keywords

  • Metamaterial
  • Wheel resonators
  • Broad band absorber
  • Energy harvesting