Luminescence and absorption in short period superlattices

  • M. F. Pereira
Part of the following topical collections:
  1. Focus on Optics and Bio-photonics, Photonica 2017


This paper applies analytical approximations for the luminescence of short period semiconductor superlattices and analyses the low density regime, demonstrating that the theory clearly connects with low density absorption with ratios of oscillator strengths of bound and continuum states as expected from the Elliott formula. A numerical study illustrates in detail the bleaching of higher order bound state. The analytical expressions have potential for systematic studies of controlled excitonic pathways characterized by THz responses.


Semiconductors superlattices Excitons Many body effects Absorption Luminescence Terahertz TERA-MIR 



The author acknowledges support from the Programme “IMPA Verão 2018” of the Instituto de Matematica Pura e Aplicada (IMPA) in Rio de Janeiro, Brazil.


  1. Alekseev, K.N., Kusmartsev, F.: Pendulum limit, chaos and phase-locking in the dynamics of ac-driven semiconductor superlattices. Phys. Lett. A 305, 281–288 (2002)ADSCrossRefzbMATHGoogle Scholar
  2. Alekseev, K.N., Erementchouk, M.V., Kusmartsev, F.V.: Direct-current generation due to wave mixing in semiconductors. Europhys. Lett. 47, 595–600 (1999)ADSCrossRefGoogle Scholar
  3. Alekseev, K.N., Cannon, E.H., Kusmartsev, F.V., Campbell, D.K.: Fractional and unquantized dc voltage generation in THz-driven semiconductor superlattices. Europhys. Lett. 56, 842–848 (2001)ADSCrossRefGoogle Scholar
  4. Alexeeva, N., Greenaway, M.T., Balanov, A.G., Makarovsky, O., Patanè, A., Gaifullin, M.B., Kusmartsev, F., Fromhold, T.M.: Controlling high-frequency collective electron dynamics via single-particle complexity. Phys. Rev. Lett. 109, 024102-1–024102-5 (2012)ADSCrossRefGoogle Scholar
  5. Apostolakis, A., Awodele, M.K., Alekseev, K.N., Kusmartsev, F.V., Balanov, A.G.: Nonlinear dynamics and band transport in a superlattice driven by a plane wave. Phys. Rev. E 95, 062203-1–062203-10 (2017)ADSCrossRefGoogle Scholar
  6. Banyai, L., Koch, S.W.: A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors. Z. Phys. B 63, 283–291 (1986)ADSCrossRefGoogle Scholar
  7. Eisele, H.: 480 GHz oscillator with an InP Gunn device. Electron. Lett. 46, 422–423 (2010)CrossRefGoogle Scholar
  8. Eisele, H., Khanna, S.P., Linfield, E.H.: Superlattice electronic devices as high-performance oscillators between 60–220 GHz. Appl. Phys. Lett. 96, 072101-1–072101-3 (2010)ADSCrossRefGoogle Scholar
  9. Fluegel, B., Francoeur, S., Mascarenhas, A., Tixier, S., Young, E.C., Tiedje, T.: Giant Spin-Orbit Bowing in GaAs1−x Bix. Phys. Rev. Lett. 97, 067205-1–067205-4 (2006)ADSCrossRefGoogle Scholar
  10. Gaifullin, M.B., Alexeeva, N.V., Hramov, A.E., Makarov, V.V., Maksimenko, V.A., Koronovskii, A.A., Greenaway, M.T., Fromhold, T.M., Patané, A., Mellor, C.J., Kusmartsev, F.V., Balanov, A.G.: Microwave generation in synchronized semiconductor superlattices. Phys. Rev. Appl. 7, 044024-1–044024-7 (2017)ADSCrossRefGoogle Scholar
  11. Haug, H., Koch, S.W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore (2005)zbMATHGoogle Scholar
  12. Kira, M., Koch, S.W.: Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron. 30, 155–296 (2006)ADSCrossRefGoogle Scholar
  13. Krier, A., De la Mare, M., Carrington, P.J., Thompson, M., Zhuang, Q., Patanè, A., Kudrawiec, R.: Development of dilute nitride materials for mid-infrared diode lasers. Semicond. Sci. Technol. 27, 4009-1–4009-8 (2012)CrossRefGoogle Scholar
  14. Latkowska, M., et al.: Temperature dependence of photoluminescence from InNAsSb layers: the role of localized and free carrier emission in determination of temperature dependence of energy gap. Appl. Phys. Lett. 102, 122109-1–122109-5 (2013)ADSCrossRefGoogle Scholar
  15. Lepeshov, S.I., Gorodetsky, A.A., Toropov, N.A., Vartanyan, T.A., Rafailov, E., Krasnok, A.E., Belov, P.A.: Optimization of nanoantenna-enhanced terahertz emission from photoconductive antennas. J. Phys: Conf. Ser. 917, 062060-1–062060-4 (2017)Google Scholar
  16. Luo, L., Men, L., Liu, Z., Mudryk, Y., Zhao, X., Yao, Y., Park, J.M., Shinar, R., Shinar, J., Ho, K.-M., Perakis, I.E., Vela, J., Wang, J.: Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite. Nat. Commun. 8, 15565-1–15565-8 (2017)ADSGoogle Scholar
  17. Mazzucato, S., Lehec, H., Carrère, H., Makhloufi, H., Arnoult, A., Fontaine, C., Amand, T., Marie, X.: Low-temperature photoluminescence study of exciton recombination in bulk GaAsBi. Nanoscale Res. Lett. 9, 1–5 (2014)CrossRefGoogle Scholar
  18. Michler, P., Vehse, M., Gutowski, J., Behringer, M., Hommel, D., Pereira Jr., M.F., Henneberger, K.: Influence of Coulomb correlations on gain and stimulated emission in (Zn, Cd)Se/Zn(S, Se)/(Zn, Mg)(S, Se) quantum well lasers. Phys. Rev. B 58, 2055–2063 (1998)ADSCrossRefGoogle Scholar
  19. Nelander, R., Wacker, A., Pereira Jr., M.F., Revin, D.G., Soulby, M.R., Wilson, L.R., Cockburn, J.W., Krysa, A.B., Roberts, J.S., Airey, R.J.: Fingerprints of spatial charge transfer in quantum cascade lasers. J. Appl. Phys. 102, 113104-1–113104-5 (2007)ADSCrossRefGoogle Scholar
  20. Oriaku, C.I., Pereira, M.F.: Analytical solutions for semiconductor luminescence including Coulomb correlations with applications to dilute bismides. J. Opt. Soc. Am. B 34, 321–328 (2017)ADSCrossRefGoogle Scholar
  21. Oriaku, C.I., Spencer, T.J., Yang, X., Zubelli, J.P., Pereira, M.F.: Analytical expressions for the luminescence of dilute quaternary InAs(N, Sb) semiconductors. J. Nanophotonics 11, 026005-1–026005-8 (2017a)ADSCrossRefGoogle Scholar
  22. Oriaku, C.I., Spencer, T.J., Pereira, M.F.: Anisotropic medium approach for the optical nonlinearities of dilute nitride superlattices. In: Pereira, M.F., Shulika, O. (eds.) THz for CBRN and Explosives Detection and Diagnosis, pp. 113–203. Springer, Berlin (2017b)CrossRefGoogle Scholar
  23. Pereira Jr., M.F.: Analytical solutions for the optical absorption of superlattices. Phys. Rev. B 52, 1978–1983 (1995)ADSCrossRefGoogle Scholar
  24. Pereira, M.F.: TERA-MIR radiation: materials, generation, detection and applications II. Opt. Quantum Electron. 47, 491–493 (2014)CrossRefGoogle Scholar
  25. Pereira, M.F.: TERA-MIR radiation: materials, generation, detection and applications. Opt. Quantum Electron. 47, 815–820 (2015)CrossRefGoogle Scholar
  26. Pereira, M.F.: Anisotropy and nonlinearity in superlattices II. Opt. Quantum Electron. 48, 423-1–423-8 (2016a)Google Scholar
  27. Pereira, M.F.: Anisotropy and nonlinearity in superlattices. Opt. Quantum Electron. 48, 321-1–321-7 (2016b)Google Scholar
  28. Pereira, M.F.: The linewidth enhancement factor of intersubband lasers: from a two-level limit to gain without inversion conditions. Appl. Phys. Lett. 109, 222102-1–222102-4 (2016c)ADSCrossRefGoogle Scholar
  29. Pereira, M.F.: Analytical expressions for numerical characterization of semiconductors per comparison with luminescence. Materials 11, 1–15 (2018)Google Scholar
  30. Pereira, M.F., Faragai, I.A.: Coupling of THz radiation with intervalence band transitions in microcavities. Opt. Express 22, 3439–3446 (2014)ADSCrossRefGoogle Scholar
  31. Pereira Jr., M.F., Henneberger, K.: Greens functions theory for semiconductor quantum well laser spectra. Phys. Rev. B 53, 16485–16496 (1996)ADSCrossRefGoogle Scholar
  32. Pereira Jr., M.F., Henneberger, K.: Microscopic theory for the influence of Coulomb correlations in the light-emission properties of semiconductor quantum wells. Phys. Rev. B 58, 2064–2076 (1998)ADSCrossRefGoogle Scholar
  33. Pereira Jr., M.F., Binder, R., Koch, S.W.: Theory of nonlinear absorption in coupled band quantum wells with many-body effects. Appl. Phys. Lett. 64, 279–281 (1994)ADSCrossRefGoogle Scholar
  34. Pereira, M.F., Winge, D., Wacker, A., Zubelli, J.P., Rodrigues, A.S., Anfertev, V., Vaks, V.: Theory and measurements of harmonic generation in semiconductor superlattices with applications in the 100 GHz to 1 THz range. Phys. Rev. B 96, 045306-1–045306-5 (2017a)ADSCrossRefGoogle Scholar
  35. Pereira, M.F., Anfertev, V., Zubelli, J.P., Vaks, V.: THz generation by GHz multiplication in superlattices. J. Nanophotonics 11(4), 046022-1–046022-6 (2017b)ADSCrossRefGoogle Scholar
  36. Razeghi, M., Lu, Q.Y., Bandyopadhyay, N., Zhou, W., Heydari, D., Bai, Y., Slivken, S.: Quantum cascade lasers: from tool to product. Opt. Express 23, 8462-1–8462-14 (2015)ADSCrossRefGoogle Scholar
  37. Razegui, M.: Recent progress of widely tunable, CW THz sources based QCLs at room temperature. Terahertz Sci. Technol. 10, 87–151 (2017)Google Scholar
  38. Schmielau, T., Pereira, M.F.: Momentum dependent scattering matrix elements in quantum cascade laser transport. Microelectron. J. 40, 869–871 (2009)CrossRefGoogle Scholar
  39. Wacker, A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357, 1–111 (2002)ADSCrossRefzbMATHGoogle Scholar
  40. Yang, X., Oriaku, C.I., Zubelli, J.P., Pereira, M.F.: Automated numerical characterization of dilute semiconductors per comparison with luminescence. Opt. Quant. Electron. 49, 93-1–93-8 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Condensed Matter PhysicsInstitute of Physics CASPrague 8Czech Republic

Personalised recommendations