DNA implementation for optical waveguide as a switchable transmission line and memristor

  • Sepideh Ebrahimi
  • Reza Sabbaghi-Nadooshan
  • Mohammad Bagher Tavakoli


In this paper, an optical waveguide has been developed based on the (Deoxyribonucleic acid) DNA core as a multi-slab structure by switching characteristic at 300 THz. We show that how the DNA with various electrical characteristics can be considered as a reconfigurable material which is placed between two optical metal layers. Therefore, we can control the current and voltage density values based on the divergence of the DNA types as an optical switch. Moreover, we can select the Au and Ag for the metal coat. In this research, we demonstrate that the Ag/DNA/Ag and Au/DNA/Ag have better performance in switching qualification than Au/DNA/Au model as a conventional structure. This DNA core waveguide has a switchable feature which cannot be found at any conventional plasmonic waveguide. The FDTD time domain is used for simulating the waveguide and the current density is considered as an ON/OFF switch. We carry out parametric studies for the physical dimensions of the waveguide and illustrate that how we can improve the switching characteristic. Moreover, we have checked the coupling effect between the transmission lines and defined the figure of merit for switching quality. This structure can be considered as an optical memristor and optical “YES” gate which couldn’t be obtained by other graphene waveguide while it became feasible based on DNA switching feature.


Plasmonic Sub wavelength DNA Waveguide Switchable Memristor 


  1. Abdalla, S., Al-Marzouki, F.M., Al-Ghamdi, A.A.: Field effect transistor using carbon nanotubes and DNA as electrical gate. Braz. J. Phys. 47, 34–41 (2017)ADSCrossRefGoogle Scholar
  2. Balci, O., Polat, E.O., Kakenov, N., Kocabas, C.: Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015)ADSCrossRefGoogle Scholar
  3. Cai, L., Tabata, H., Kawai, T.: Self-assembled DNA networks and their electrical conductivity. Appl. Phys. Lett. 77, 3105–3106 (2000)ADSCrossRefGoogle Scholar
  4. Chu, H., Chiu, S.-C., Sung, C.-F., Tseng, W., Chang, Y.-C., Jian, W.-B., Chen, Y.-C.: Programmable redox state of the nickel ion chain in DNA. Nano Lett. 14, 1026–1031 (2014)ADSCrossRefGoogle Scholar
  5. Davoyan, A.R., Shadrivov, I.V., Kivshar, Y.S.: Quadratic phase matching in nonlinear plasmonic nanoscale waveguides. Opt. Express 17, 20063–20068 (2009)ADSCrossRefGoogle Scholar
  6. Degiron, A., Smith, D.R.: Nonlinear long-range plasmonic waveguides. Phys. Rev. A 82(3), 033812 (2010)ADSCrossRefGoogle Scholar
  7. Des Francs, G.C., Grandidier, J., Massenot, S., Bouhelier, A., Weeber, J.-C., Dereux, A.: Integrated plasmonic waveguides: a mode solver based on density of states formulation. Phys. Rev. B 80, 115419 (2009)ADSCrossRefGoogle Scholar
  8. Diedrich, D., Rottler, A., Heitmann, D., Mendach, S.: Metal–dielectric metamaterials for transformation-optics and gradient-index devices in the visible regime. New J. Phys. 14(5), 053042 (2012)ADSCrossRefGoogle Scholar
  9. Emboras, A., Goykhman, I., Desiatov, B., Mazurski, N., Stern, L., Shappir, J., Levy, U.: Nanoscale plasmonic memristor with optical readout functionality. Nano Lett. 13(12), 6151–6155 (2013)ADSCrossRefGoogle Scholar
  10. Gao, X., Ning, L., Liu, Z., Li, M., Ye, P., Chen, P., Li, M.: “Optical filter effect of the metal–dielectric–metal waveguide with stub structure. Optik-Int. J. Light Electron Opt. 127, 2444–2447 (2016)CrossRefGoogle Scholar
  11. Hadad, Y., Steinberg, B.Z.: Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett. 105, 233904 (2010)ADSCrossRefGoogle Scholar
  12. Hoessbacher, C., Fedoryshyn, Y., Emboras, A., Melikyan, A., Kohl, M., Hillerkuss, D., Hafner, C., Leuthold, J.: The plasmonic memristor: a latching optical switch. Optica 1(4), 198–202 (2014)CrossRefGoogle Scholar
  13. Hosseinbeig, A., Pirooj, A., Zarrabi, F.B.: A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator. J. Magn. Magn. Mater. 423, 203–207 (2017)ADSCrossRefGoogle Scholar
  14. Hosseininejad, S.E., Komjani, N.: Comparative analysis of graphene-integrated slab waveguides for terahertz plasmonics. Photon. Nanostructures-Fundam. Appl. 20, 59–67 (2016)ADSCrossRefGoogle Scholar
  15. Hung, Y., Hsu, W.-T., Lin, T.-Y., Fruk, L.: Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Appl. Phys. Lett. 99, 277 (2011)Google Scholar
  16. Jahangiri, P., Zarrabi, F.B., Naser-Moghadasi, M., Afsaneh, S.A., Heydari, S.: Hollow plasmonic high Q-factor absorber for bio-sensing in mid-infrared application. Opt. Commun. 394, 80–85 (2017)ADSCrossRefGoogle Scholar
  17. Kaur, S., Kaur, S., Kaur, M., Kumar, G. Numerical analysis of terahertz surface plasmon polaritons propagating in a parallel plate configuration. In: Journal of Physics: Conference Series, vol. 759, no. 1, p. 012049. IOP Publishing (2016)Google Scholar
  18. Leal‐Sevillano, C.A., Ruiz‐Cruz, J.A., Montejo‐Garai, J.R., Rebollar, J.M. Rigorous analysis of the parallel plate waveguide: from the transverse electromagnetic mode to the surface plasmon polariton. Radio Sci. 47(6), 1–8 (2012)Google Scholar
  19. Liu, J., Mendis, R., Mittleman, D.M.: The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides. Appl. Phys. Lett. 98, 231113 (2011)ADSCrossRefGoogle Scholar
  20. Locatelli, A., Town, G.E., Angelis, C.D.: Graphene-based terahertz waveguide modulators. IEEE Trans. Terahertz Sci. Technol. 5, 351–357 (2015)ADSCrossRefGoogle Scholar
  21. Ooi, K.J., Chu, H.S., Ang, L.K., Bai, P.: Mid-infrared active graphene nanoribbon plasmonic waveguide devices. JOSA B 30, 3111–3116 (2013)ADSCrossRefGoogle Scholar
  22. Park, S., Taton, T.A., Mirkin, C.A.: Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559), 1503–1506 (2002)ADSGoogle Scholar
  23. Qin, S., Dong, R., Yan, X., Du, Q.: A reproducible write–(read) n–erase and multilevel bio-memristor based on DNA molecule. Org. Electron. 22, 147–153 (2015)CrossRefGoogle Scholar
  24. Qu, B., Lin, Q., Wan, T., Du, H., Chen, N., Lin, X., Chu, D.: Transparent and flexible write-once-read-many (WORM) memory device based on egg albumen. J. Phys. D-Appl. Phys. 50(31), 315105 (2017)ADSCrossRefGoogle Scholar
  25. Sharma, P., Kumar, V.D.: Investigation of multilayer planar hybrid plasmonic waveguide and bends. Electron. Lett. 52, 732–734 (2016)CrossRefGoogle Scholar
  26. Soltani, M.R.: Corrugated-enhanced second harmonic generation in metal–insulator–metal plasmonic waveguides. Opt. Quant. Electron. 49, 242 (2017)CrossRefGoogle Scholar
  27. Sun, B., Zhang, X., Zhou, G., Li, P., Zhang, Y., Wang, H., Xia, Y., Zhao, Y.: An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Org. Electron. 42, 181–186 (2017)CrossRefGoogle Scholar
  28. Torrezan, A.C., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S.: Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)CrossRefGoogle Scholar
  29. Triberis, G.P., Dimakogianni, M.: DNA in the material world: electrical properties and nano-applications. Recent Pat. Nanotechnol. 3, 135–153 (2009)CrossRefGoogle Scholar
  30. Xu, G., Cao, M., Liu, C., Sun, J., Pan, T.: Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers. Opt. Commun. 366, 112–118 (2016)ADSCrossRefGoogle Scholar
  31. Yazdanypoor, M., Emami, F.: Optimizing of the novel asymmetric plasmonic waveguide with two identical gratings to increase the SHG efficiency. Opt. Quant. Electron. 48, 483 (2016)CrossRefGoogle Scholar
  32. Zarrabi, F.B., Naser-Moghadasi, M.: Plasmonic split ring resonator with energy enhancement for the application of bio-sensing and energy harvesting based on the second harmonic generation and multi Fano resonance. J. Alloy. Compd. 706, 568–575 (2017)CrossRefGoogle Scholar
  33. Zhou, X., Zhang, T., Chen, L., Hong, W., Li, X.: A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Lightwave Technol. 32, 3597–3601 (2014)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sepideh Ebrahimi
    • 1
  • Reza Sabbaghi-Nadooshan
    • 2
  • Mohammad Bagher Tavakoli
    • 1
  1. 1.Department of Electrical EngineeringIslamic Azad University, Arak BranchTehranIran
  2. 2.Electrical Engineering DepartmentIslamic Azad University, Central Tehran BranchTehranIran

Personalised recommendations