Advertisement

First principles study on electronic and optical properties of AlxGa1−xN and InyGa1−yN

  • Congcong Wang
  • Zhiyong Wang
Article
  • 92 Downloads

Abstract

The band structure, density of states of AlxGa1−xN and InyGa1−yN was performed by the first-principles method within the local density approximation. The calculated energy gaps of the AlN, Al0.5Ga0.5N, GaN, In0.5Ga0.5N and InN were 5.48, 4.23, 3.137, 1.274 and 0.504 eV, which were in agreement with the experimental result. The dielectric functions, absorption coefficient and loss function were calculated based on Kramers–Kronig relations. Further more, the relationships between electronic structure and optical properties were investigated theoretically. For AlxGa1−xN and InyGa1−yN materials, the micromechanism of the optical properties were explained.

Keywords

First principles AlxGa1−xInyGa1−yOptical properties 

Notes

Acknowledgements

The Beijing municipal committee organization department of the communist party of China (Q010999201701).

References

  1. Ahmed, R., Akbarzadeh, H., Fazel, E.A.: A first principle study of band structure of III-nitride compounds. Phys. B-Condens Matter 370(1–4), 52–60 (2005).  https://doi.org/10.1016/j.physb.2005.08.044 ADSCrossRefGoogle Scholar
  2. Dridi, Z., Bouhafs, B., Ruterana, P.: First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1−xN, InxGa1−xN and InxAl1−xN alloys. Semicond. Sci. Tech. 18(9), 850–856 (2003).  https://doi.org/10.1088/0268-1242/18/9/307 ADSCrossRefGoogle Scholar
  3. Farzan, M., Elahi, S.M., Salehi, H., Abolhassani, M.R.: An investigation of electronic and optical properties of InN nanosheet by first principle study. Opt. Commun. 395, 293–300 (2017).  https://doi.org/10.1016/j.optcom.2016.08.078 ADSCrossRefGoogle Scholar
  4. Fedler, F., Klausing, H., Hauenstein, R.J., Ponce, A., Molina, S.I., Semchinova, O., Aderhold, J., Graul, J.: High reflectivity AlGaN/AlN DBR mirrors grown by PA-MBE. In: Proceedings of International Workshop on Nitride Semiconductors, pp. 258–262 (2002)Google Scholar
  5. Kuo, Y.K., Lin, W.W.: Band-gap bowing parameter of the AlxIn1−xN derived from theoretical simulation. Jpn. J. Appl. Phys. 41(9), 5557–5558 (2002).  https://doi.org/10.1143/jjap.41.5557 ADSCrossRefGoogle Scholar
  6. Liu, P., De Sarker, A., Ahuja, R.: Shear strain induced indirect to direct transition in band gap in AlN monolayer nanosheet. Comput. Mater. Sci. 86, 206–210 (2014)CrossRefGoogle Scholar
  7. Monemar, B.: Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B. 10(2), 676–681 (1974)ADSCrossRefGoogle Scholar
  8. Panchal, J., Joshi, M., Gajjar, P.: High pressure structural, electronic and vibrational properties of InN and InP. Phase Transit. 89(3), 283–309 (2015).  https://doi.org/10.1080/01411594.2015.1075244 CrossRefGoogle Scholar
  9. Panchal, J.M., Joshi, M., Gajjar, P.N.: High pressure structural, electronic and vibrational properties of InN and InP. Phase Transit. 89(3), 283–309 (2016).  https://doi.org/10.1080/01411594.2015.1075244 CrossRefGoogle Scholar
  10. Perlin, B., Jauberthiecarillon, C., Itie, J.P., San Miguel, A., Grzegory, I., Polian, A.: Raman-scattering and X-ray-absorption spectroscopy in gallium nitride under high-pressure. Phys. Rev. B 45(1), 83–89 (1992).  https://doi.org/10.1103/PhysRevB.45.83 ADSCrossRefGoogle Scholar
  11. Perry, P.B., Rutz, R.F.: Optical-absorption edge of single-crystal AIN prepared by a close-spaced vapor process. Appl. Phys. Lett. 33(4), 319–321 (1978).  https://doi.org/10.1063/1.90354 ADSCrossRefGoogle Scholar
  12. Rani, A., Kumar, R.: LDA plus U study of induced half metallicity in Cr-doped GaN. J. Supercond. Nov. Magn. 30(6), 1483–1491 (2017).  https://doi.org/10.1007/s10948-016-3938-8 CrossRefGoogle Scholar
  13. Sahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III–V binary compounds: First-principles calculations. Phys. Rev. B 80(15), 155453 (2009).  https://doi.org/10.1103/physrevb.80.155453 ADSCrossRefGoogle Scholar
  14. Schulz, H., Thiemann, K.H.: Crystal structure refinement of AlN and GaN. Solid State Commun. 23(11), 815–819 (1977).  https://doi.org/10.1016/0038-1098(77)90959-0 ADSCrossRefGoogle Scholar
  15. Wu, J., Walukiewicz, W., Shan, W., Yu, K.M., Ager, J.W., Li, S.X., Haller, E.E., Lu, H., Schaff, W.J.: Temperature dependence of the fundamental band gap of InN. J. Appl. Phys. 94(7), 4457–4460 (2003).  https://doi.org/10.1063/1.1605815 ADSCrossRefGoogle Scholar
  16. Xiao, G., Wang, L.L., Rong, Q.Y., Xu, H.Q., Xiao, W.Z.: A comparative study on magnetic properties of Mo doped AlN, GaN and InN monolayers from first-principles. Phys. B 524, 47–52 (2017a).  https://doi.org/10.1016/j.physb.2017.08.050 ADSCrossRefGoogle Scholar
  17. Xiao, G., Wang, L., Rong, M.Q., Xu, H., Xiao, W.: A comparative study on magnetic properties of Mo doped AlN, GaN and InN monolayers from first-principles. Phys. B Cond. Matter 524, 47–52 (2017b)ADSCrossRefGoogle Scholar
  18. Yun, F., Reshchikov, M.A., He, L., King, T., Morkoc, H., Novak, S.W., Wei, L.C.: Energy band bowing parameter in AlxGa1−xN alloys. J. Appl. Phys. 92(8), 4837–4839 (2002).  https://doi.org/10.1063/1.1508420 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Laser EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations