Advertisement

Discrete and selective absorption in crystalline molecular nanofilms

  • Matilda Vojnović
  • Ana J. Šetrajčić-Tomić
  • Siniša M. Vučenović
  • Jovan P. Šetrajčić
Article
  • 34 Downloads
Part of the following topical collections:
  1. Focus on Optics and Bio-photonics, Photonica 2017

Abstract

Recent research in nano-optical engineering and in nanomedicine as well, seeks for methods of construction of various types of nano-markers, nano-carriers, and ways to deliver drugs to the exactly determined regions of body. In this process it is important to find methods of recognition of certain types of molecules. It is obvious that optical recognition would be the easiest and the most effective way to do it. Our research presents a model of a molecular ultrathin crystalline film and generated exciton system inside it and corresponding methodology of analysis of their optical characteristics. Properties of these spatially very restricted structures are very sensitive to their surrounding surfaces. Using the two-time Green’s functions adapted for crystalline structures with symmetry breaking, and graphical-numerical software, we have calculated the energy spectra and possible exciton states. We have shown that the appearance and the presence of localized states on the surfaces and in the boundary layers of the film depend on the thickness of the film and the film surroundings, presented through the perturbation of parameters on surfaces. Optical properties in these structures demonstrate discrete and very selective resonant absorption spectra, depending on the perturbation on their surfaces.

Keywords

Excitons Thin film Green’s functions Localized states Permittivity 

Notes

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants: OI–171039 and TR–34019) and by the Provincial Secretariat for High Education, Science and Technological Development of Vojvodina (Grant: 114-451-2092/2016) as well as by the Ministry of Science and Technological Development of the Republic of Srpska (Grant: 19/6-020/961-16/15).

References

  1. Agranovich, V.M., Ginzburg, V.L.: Crystal Optic with Space Dispersion and Theory of Excitons. Nauka, Moskwa (1979). (in Russian) Google Scholar
  2. Agranovich, V.M., Toshich, B.S.: Collective properties of Frenkel excitons. Zh. Eksp. Teor. Fiz. 53, 149–162 (1967) [Sov. Phys. JETP 26, 104–112 (1968)]Google Scholar
  3. Chan, W.C.W.: Bionanotechnology progress and advances. Biol. Blood Marrow Transplant. 12, 87–91 (2006)CrossRefGoogle Scholar
  4. Delerue, C., Lannoo, M.: Nanostructures—Theory and Modelling. Springer, Berlin (2009)Google Scholar
  5. Dzyaloshinskii, I.E., Pitaevskii, L.P.: Van der Waals Forces in an inhomogeneous dielectric. Zh. Eksp. Teor. Fiz. 36, 1797–1805 (1959) [Sov. Phys. JETP 9, 1282–1287 (1959)]Google Scholar
  6. Frasch, W., Spetzler, D.: Thin film delivers drugs. Biophotonics, TEMPE, Ariz., http://www.photonics.com (2008). 26 Mar 2008
  7. Kasap, S., Koughia, C., Singh, J., Ruda, H., OʼLeary, S.: Optical properties of electronic materials—fundamentals and characterization. In: Kasap, S., Capper, P. (eds.) Springer handbook of electronic and photonic materials, Springer, Boston (2006); ISBN: 978-0-387-26059-4,  https://doi.org/10.1007/978-0-387-29185-7_3
  8. Mahan, G.: Many Particle Physics. Plenum Press, New York (1990)CrossRefGoogle Scholar
  9. Maradudin, A.A.: Interaction of surface polaritons and plasmons with surface roughness. In: Agranovich, V.M., Mills, D.L. (eds.) Surface Polaritons, pp. 405–510. North-Holland, Amsterdam (1982)Google Scholar
  10. Maradudin, A.A.: Light scattering and nanoscale surface roughness. In: Lockwood, D.J. (ed.) Nanostructure Science and Technology. Springer, New York (2007)Google Scholar
  11. Morrow, K.J., Bawa, R., Wei, C.: Recent advances in basic and clinical nanomedicine. Med. Clin. N. Am. 91, 805–843 (2007)CrossRefGoogle Scholar
  12. Sajfert, V.D., Šetrajčić, J.P., Popov, D., Tošić, B.S.: Difference equations in condensed matter physics and their applications to the exciton system in thin molecular film. Phys. A 353, 217–234 (2005)CrossRefGoogle Scholar
  13. Sajfert, V., Jaćimovski, S., Popov, D., Tošić, B.: Statistical and dynamical equivalence of different elementary cells. J. Comput. Theor. Nanosci. 4(3), 1–8 (2007)CrossRefGoogle Scholar
  14. Sajfert, V.D., Šetrajčić, J.P., Jaćimovski, S.K., Popov, D.: Application of difference calculus and difference equations to investigation of specific nanostructure properties. Quantum Matter 3(4), 307–314 (2014).  https://doi.org/10.1166/qm.2014.1129 CrossRefGoogle Scholar
  15. Schaefer, H.E.: Nanoscience—The Science of the Small in Physics Engineering Chemistry Biology and Medicine. Springer, Berlin (2010). ISBN 978-3-642-10559-3CrossRefGoogle Scholar
  16. Scholes, G.D., Rumbles, G.: Excitons in nanoscale systems, Nat. Mater. 5: 683–696 (2006).  https://doi.org/10.1038/nmat1710; https://www.nature.com/articles/nmat1710
  17. Šetrajčić, J.P.: Adequate determination of micro and macro properties of optical nano-crystals. Opto-Electron Rev. 25(4), 303–310 (2017).  https://doi.org/10.1016/j.opelre.2017.08.003 CrossRefGoogle Scholar
  18. Šetrajčić, J.P., Ilić, D.I., Markoski, B., Šetrajčić, A.J., Vučenović, S.M., Mirjanić, D.L., Škipina, B., Pelemiš, S.: Adapting and application of the green’s functions method onto research of the molecular ultrathin film optical properties. Physica Scripta T 135(014043), 1–4 (2009)Google Scholar
  19. Šetrajčić, J.P., Jaćimovski, S.K., Sajfert, V.D., Šetrajčić, I.J.: Specific quantum mechanical solution of difference equation of hyperbolic type. Commun. Nonlinear Sci. Numer. Simulat. 19(5), 1313–1328 (2014).  https://doi.org/10.1016/j.cnsns.2013.08.026 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. Šetrajčić, J.P., Rodić, D., Šetrajčić, J.P.: Optical properties of layers of symmetric molecular nanofilms. J. Opt. 44(1), 1–6 (2015).  https://doi.org/10.1007/s12596-014-0231-8 CrossRefGoogle Scholar
  21. Šetrajčić, I.J., Rodić, D., Šetrajčić, J.P., Vučenović, S.M., Šetrajčić-Tomić, A.J., Vojnović, M.: Optical peculiarities of various molecular crystalline nanofilms. Zastita Materijala 58(3), 377–384 (2017).  https://doi.org/10.5937/ZasMat1703377S CrossRefGoogle Scholar
  22. Simmons, J.H., Potter, K.S.: Optical Materials, Academic, San Diego (2000); ISBN-13:978-0126441406, https://trove.nla.gov.au/work/6523117
  23. Singh, J.: Excitation energy transfer processes in condensed matter, Springer, New York (1994); ISBN 978-1-4899-0996-1, http://www.springer.com/us/book/9780306447808
  24. Škipina, B., Mirjanić, D.L., Vučenović, S.M., Šetrajčić, J.P., Šetrajčić, I.J., Šetrajčić-Tomić, A.J., Pelemiš, S.S., Markoski, B.: Selective IR absorption in molecular nanofilms. Opt. Mater. 33, 1578–1584 (2011).  https://doi.org/10.1016/j.optmat.2011.04.008 ADSCrossRefGoogle Scholar
  25. Tringides, M.C., Jatochawski, M., Bauer, E.: Quantum size effects in metallic nanostructures. Phys. Today 60, 50–54 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of MedicineUniversity of Novi SadNovi SadSerbia
  2. 2.Department of Physics, Faculty of SciencesUniversity of Banja LukaBanja LukaBosnia and Herzegovina
  3. 3.Department of Physics, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  4. 4.Faculty of SportsUniversity “Union – Nikola Tesla”Novi BeogradSerbia

Personalised recommendations