The SNR improvement for quartz-enhanced photoacoustic spectroscopy using wavelength calibration and fiber reflector

  • Z. L. Wang
  • C. W. Tian
  • Q. Liu
  • J. Chang
  • Q. D. Zhang


Wavelength calibration technique combined with a fiber reflector was used to improve the signal to noise ratio (SNR) of quartz-enhanced photoacoustic spectroscopy (QEPAS). A distributed feedback laser diode (DFB-LD), driven by sawtooth wave and high frequency sinusoidal wave, was used to excite the second harmonic signal of a quartz tuning fork (QTF) through laser-gas molecular interaction. Two collimators conducted the laser alignment through the spacing gap of QTF forks. Central wavelength of the DFB-LD was locked to the target gas absorption center by identifying the second harmonic signal maximum and applying calibration feedback on the driving current. The gas absorption center calibration and gas concentration measurements are conducted at a specific interval. The SNR of the photoacoustic signal was further acoustically enhanced by using a pair of on-beam acoustic resonators through increasing the photo-acoustic conversion efficient, and optically enhanced by using a fiber reflector to improve the laser power for photoacoustic signal excitation. The experimental results show that the SNR in wavelength calibration mode is 15 times higher than the conventional wavelength scanning mode and QEPAS signal with fiber reflector is 1.37 times stronger compared with that without a fiber reflector.


Quartz-enhanced photoacoustic spectroscopy Wavelength calibration Fiber reflector Gas detection 



This work was supported by Research Fund for the Doctoral Program of Liao cheng University (318051543), National Natural Science Foundation of China (61475085 and 61405105) and the Science and technology development project of Shan dong province (2014GGX101007).


  1. Ba, T.N., Triki, M., Desbrosses, G., Vicet, A.: Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode. Rev. Sci. Instrum. 86, 023111 (2015)ADSCrossRefGoogle Scholar
  2. Dong, L., Wu, H.P., Zheng, H.D., Liu, Y.Y., Liu, X.L., Jiang, W.Z., Zhang, L., Ma, W.G., Ren, W., Yin, W.B.: Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 39, 2479–2482 (2014)ADSCrossRefGoogle Scholar
  3. Gong, P., Xie, L., Qi, X.Q., Wang, R.: A QEPAS-based central wavelength stabilized diode laser for gas sensing. IEEE Photonics Technol. Lett. 27, 545–548 (2015)ADSCrossRefGoogle Scholar
  4. Haisch, C.: Photoacoustic spectroscopy for analytical measurements. Meas. Sci. Technol. 23, 012001 (2012)ADSCrossRefGoogle Scholar
  5. Kosterev, A.A., Tittel, R.F.: Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76, 219–755 (2005)CrossRefGoogle Scholar
  6. Kosterev, A.A., Bakhirkin, Y.A., Curl, R.F., Tittel, F.K.: Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 27, 1902–1904 (2002)ADSCrossRefGoogle Scholar
  7. Li, Z.L., Wang, Z., Wang, C., Ren, W.: Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection. Appl. Phys. B 122, 1–6 (2016)Google Scholar
  8. Liu, Y., Chang, J., Jie, L.: Quartz-enhanced photoacoustic spectroscopy with right-angle prism. Sensors 16, 1–7 (2016)CrossRefGoogle Scholar
  9. Ma, Y.F., He, Y., Chen, C., Yu, X., Zhang, J.B., Peng, J.B., Sun, R., Tittel, F.K.: Planar laser-based QEPAS trace gas sensor. Sensors 16, 1–7 (2016)CrossRefGoogle Scholar
  10. Patimisco, P., Scamarcio, G., Tittle, F.K., Spagnolo, V.: Quartz-enhanced photoacoustic spectroscopy: a review. Sensors 14, 6165–6206 (2014)CrossRefGoogle Scholar
  11. Sampaolo, A., Patimisco, P., Dong, L., Geras, A., Scamarcio, G., Starecki, T., Tittel, F.K., Spagnolo, V.: Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes. Appl. Phys. Lett. 107, 231102 (2015)ADSCrossRefGoogle Scholar
  12. Sampaolo, A., Patimisco, P., Giglio, M., Vitiello, M.S., Beere, H.E., Ritchie, D.A., Scamarcio, G., Tittel, F.K., Spagnolo, V.: Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy. Sensors 16, 1–8 (2016)CrossRefGoogle Scholar
  13. Sim, J.Y., Ahn, C.G., Huh, C., Chung, K.H., Jeong, E.J., Kim, B.K.: Synergetic resonance matching of a microphone and a photoacoustic cell. Sensors 17, 1–10 (2017)CrossRefGoogle Scholar
  14. Wang, G.S., Yi, H.M., Cai, T.D., Wang, L., Tan, T., Zhang, W.J., Gao, X.M.: Research on the real-time measurement system based on QEPAS. Acta Phys. Sin. 61, 120701 (2012)Google Scholar
  15. Wang, Z., Geng, J., Ren, W.: Quartz-enhanced photoacoustic spectroscopy (QEPAS) detection of the ν7 band of ethylene at low pressure with CO2 interference analysis. Appl. Spectrosc. 71, 1834–1841 (2017)ADSCrossRefGoogle Scholar
  16. Wang, Q., Wang, Z., Ren, W.: Wavelength-stabilization-based photoacoustic spectroscopy for methane detection. Meas. Sci. Technol. 28, 1–7 (2017b)Google Scholar
  17. Wu, H., Dong, L., Zheng, H., Yu, Y.J., Ma, W.G., Zhang, L., Yin, W.B., Xiao, L.T., Jia, S.T., Tittel, F.K.: Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nat. Commun. 8, 1–8 (2017)ADSCrossRefGoogle Scholar
  18. Yanagawa, T., Saito, S., Yamamoto, Y.: Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines. Appl. Phys. Lett. 45, 826–828 (1984)ADSCrossRefGoogle Scholar
  19. Zheng, H.D., Yin, X.K., Dong, L., Wu, H.P., Liu, X.L., Ma, W.G., Zhang, L., Yin, W.B., Jia, S.T.: Multi-quartz enhanced photoacoustic spectroscopy with different acoustic microresonator configurations. J. Spectrosc. 2015, 1–6 (2015a)ADSCrossRefGoogle Scholar
  20. Zheng, H., Dong, L., Liu, X., Liu, Y., Wu, H., Ma, W., Zhang, L., Yin, W., Jia, S.: Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection. Laser Phys. 25, 125601 (2015b)ADSCrossRefGoogle Scholar
  21. Zheng, H.D., Dong, L., Sampaolo, A., Wu, H.P., Patimisco, P., Yin, X.K., Ma, W.G., Zhang, L., Yin, W.B., Spagnolo, V., Jia, S.T., Tittel, F.K.: Single-tube on-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 41, 978–981 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Z. L. Wang
    • 1
  • C. W. Tian
    • 1
  • Q. Liu
    • 1
  • J. Chang
    • 2
  • Q. D. Zhang
    • 2
  1. 1.School of Physics Science and Information Technology and Shandong Key Laboratory of Optical Communication Science and TechnologyLiaocheng UniversityLiaochengChina
  2. 2.School of Information Science and Engineering and Shandong Provincial Key Laboratory of Laser Technology and ApplicationShandong UniversityJinanChina

Personalised recommendations