Enhancing environmental stability of a PbS quantum dot optical fiber amplifier via rational interface design

  • Xiaolan Sun
  • Wei Zhao
  • Liyuan Liu
  • Di Shen
  • Guangyao Liu
  • Alan R. Kost


A PbS quantum dot optical fiber amplifier with enhanced processability and environmental stability is described. Modification of PbS quantum dots with multifunction copolymers was demonstrated via spectroscopy to aid dispersion of the quantum dots in a sol during the fabrication of a quantum dot optical fiber amplifier without degradation or modification of optical properties. The influence of multifunction copolymers and oleylamine-coated PbS quantum dots on the structure was studied via scanning electron microscopy. The nanoparticle shape of oleylamine-coated PbS quantum dots after polymer modification remained unchanged compared to those previously reported. With the addition of a fluorine-containing component, a PbS quantum dot optical fiber amplifier retained 96% of its initial gain after 100 days, as compared with 16% for quantum dots modified with a non-fluorine-containing polymer, it was certain that fluorine bond of multifunction copolymers had a good improvement in durability of PbS quantum dot. Simultaneously, PbS quantum dot optical amplifier gain as high as 17 dB was achieved at 1550 nm.


Quantum dot Fiber amplifier Multifunction copolymers Fluorine-containing polymer Environmental stability 



The work was funded by the National Natural Science Foundation of China (61377040, 61605107), Young Eastern Scholar Program at Shanghai Institutions of Higher Learning (QD2015027), “Young 1000 Talent Plan” Program of China and the Open Program of the State Key Laboratory of Advanced Optical Communication Systems and Networks at Shanghai Jiaotong University, China (2017GZKF17).


  1. Bhardwaj, A., Hreibi, A., Liu, C., Heo, J., Blondy, J.M., Gérôme, F.: High temperature stable PbS quantum dots. Opt. Express 21(21), 24922–24928 (2013)ADSCrossRefGoogle Scholar
  2. Cheng, C.: A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise. J. Lightwave Technol. 26(11), 1404–1410 (2008)ADSCrossRefGoogle Scholar
  3. Crisp, R.W., Pach, G.F., Kurley, J.M., France, R.M., Reese, M.O., Nanayakkara, S.U., Bradley, A.M., Dmitri, V.T., Matthew, C.B., Luther, J.M.: Tandem solar cells from solution-processed CdTe and PbS quantum dots using a ZnTe–ZnO tunnel junction. Nano Lett. 17(2), 1020–1027 (2017)ADSCrossRefGoogle Scholar
  4. Dong, Y., Wen, J., Pang, F., Luo, Y., Peng, G.D., Chen, Z., Wang, T.: Formation and photoluminescence property of PbS quantum dots in silica optical fiber based on atomic layer deposition. Opt. Mater. Express 5(4), 712–719 (2015)CrossRefGoogle Scholar
  5. Du, J., Zhang, M., Guo, Z., Chen, J., Zhu, X., Hu, G., Peng, P., Zheng, Z., Zhang, H.: Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7, 42357 (2017)ADSCrossRefGoogle Scholar
  6. Guo, H., Pang, F., Zeng, X., Wang, T.: PbS quantum dot fiber amplifier based on a tapered SMF fiber. Opt. Commun. 285(13), 3222–3227 (2012)ADSCrossRefGoogle Scholar
  7. Helmut, C.Y., Argyros, A., Barton, G., van Eijkelenborg, M.A., Barbe, C., Finnie, K., Kong, L., Ladouceur, F., McNiven, S.: Quantum dot and silica nanoparticle doped polymer optical fibers. Opt. Express 15(16), 9989–9994 (2007)CrossRefGoogle Scholar
  8. Hreibi, A., Gérôme, F., Auguste, J.L., Zhang, Y., William, W.Y., Blondy, J.M.: Semiconductor-doped liquid-core optical fiber. Opt. Lett. 36(9), 1695–1697 (2011)ADSCrossRefGoogle Scholar
  9. Huang, D., Easter, M., Gumbs, G., Maradudin, A.A., Lin, S.Y., Cardimona, D.A., Zhang, X.: Controlling quantum-dot light absorption and emission by a surface-plasmon field. Opt. Express 22(22), 27576–27605 (2014)ADSCrossRefGoogle Scholar
  10. Kang, I., Wise, F.W.: Electronic structure and optical properties of PbS and PbSe quantum dots. JOSA B 14(7), 1632–1646 (1997)ADSCrossRefGoogle Scholar
  11. Kawanishi, S., Komukai, T., Ohmori, M., Sakaki, H.: Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber. In: 2007 Conference on Lasers and Electro-Optics, 2007. CLEO 2007, pp. 1–2. IEEE (2007)Google Scholar
  12. Khordad, R., Rezaei, G., Vaseghi, B., Taghizadeh, F., Kenary, H.A.: Study of optical properties in a cubic quantum dot. Opt. Quant. Electron. 42(9–10), 587–600 (2011)CrossRefGoogle Scholar
  13. Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, -J.H., Bawendi, M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science 290(5490), 314–317 (2000)ADSCrossRefGoogle Scholar
  14. Lee, Y.W., Chen, C.M., Huang, C.W., Chen, S.K., Jiang, J.R.: Passively Q-switched Er 3+ -doped fiber lasers using colloidal PbS quantum dot saturable absorber. Opt. Express 24(10), 10675–10681 (2016)ADSCrossRefGoogle Scholar
  15. Lu, Y.B., Chu, P.L., Alphones, A., Shum, P.: A 105-nm ultrawide-band gain-flattened amplifier combining C-and L-band dual-core EDFAs in a parallel configuration. IEEE Photonics Technol. Lett. 16(7), 1640–1642 (2004)ADSCrossRefGoogle Scholar
  16. Mao, H., Chen, Y., Wang, J.: Raman scattering and luminescence emission of the CdSe/ZnS quantum dots mediated by the surface plasmon. Opt. Quant. Electron. 47(8), 2811–2819 (2015)CrossRefGoogle Scholar
  17. Moras, J.D., Strandberg, B., Suc, D., Wilson, K.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)CrossRefGoogle Scholar
  18. Moreels, I., Justo, Y., De Geyter, B., Haustraete, K., Martins, J.C., Hens, Z.: Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. ACS Nano 5(3), 2004–2012 (2011)CrossRefGoogle Scholar
  19. Pal, M., Bandyopadhyay, S., Biswas, P., Debroy, R., Paul, M.C., Sen, R., Dasgupta, K., Bhadra, S.K.: Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications. Opt. Quantum Electron. 39(14), 1231–1243 (2007)CrossRefGoogle Scholar
  20. Pang, F., Sun, X., Guo, H., Yan, J., Wang, J., Zeng, X., Chen, Z., Wang, T.: A PbS quantum dots fiber amplifier excited by evanescent wave. Opt. Express 18(13), 14024–14030 (2010)ADSCrossRefGoogle Scholar
  21. Shirakawa, A., Maruyama, H., Ueda, K., Olausson, C.B., Lyngsø, J.K., Broeng, J.: High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm. Opt. Express 17(2), 447–454 (2009)ADSCrossRefGoogle Scholar
  22. Sun, X., Xie, L., Zhou, W., Pang, F., Wang, T., Kost, A.R., An, Z.: Optical fiber amplifiers based on PbS/CdS QDs modified by polymers. Opt. Express 21(7), 8214–8219 (2013)ADSCrossRefGoogle Scholar
  23. Sun, X., Dai, R., Chen, J., Zhou, W., Wang, T., Kost, A.R., Tsung, C.K., An, Z.: Enhanced thermal stability of oleic-acid-capped PbS quantum dot optical fiber amplifier. Opt. Express 22(1), 519–524 (2014)ADSCrossRefGoogle Scholar
  24. Toishi, M., Englund, D., Faraon, A., Vučković, J.: High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Opt. Express 17(17), 14618–14626 (2009)ADSCrossRefGoogle Scholar
  25. Wang, H.F., Zhu, A.D., Zhang, S.: Physical optimization of quantum error correction circuits with spatially separated quantum dot spins. Opt. Express 21(10), 12484–12494 (2013)ADSCrossRefGoogle Scholar
  26. Watekar, P. R., Lin, A., Ju, S., Han, W. T.: 1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber. In: 2008 Conference on Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008, pp. 1–3. IEEE (2008)Google Scholar
  27. Watekar, P.R., Yang, H., Ju, S., Han, W.T.: Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots. Opt. Express 17(5), 3157–3164 (2009)ADSCrossRefGoogle Scholar
  28. Yi, L.L., Zhan, L., Taung, C.S., Luo, S.Y., Hu, W.S., Su, Y.K., Xia, Y.X., Leng, L.: Low noise figure all-optical gain-clamped parallel C + L band Erbium-doped fiber amplifier using an interleaver. Opt. Express 13(12), 4519–4524 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.School of Chemistry and Pharmaceutical EngineeringTaishan Medical UniversityTaishanPeople’s Republic of China
  3. 3.College of Optical SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations