Skip to main content
Log in

Indirect optical crosstalk reduction by highly-doped backside layer in single-photon avalanche diode arrays

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A method of reducing indirect optical crosstalk in single-photon avalanche diode arrays is investigated by TCAD simulations. The reduction is accomplished by taking advantage of an enhanced optical absorption in a highly-doped Si layer on the backside of the wafer. A simulation environment was developed to give information about optical crosstalk by incorporating the experimental optical constants of the materials constituting the crosstalk-reduction layer. It is shown that the indirect optical crosstalk is greatly reduced by increasing the thickness and doping of the layer. A crosstalk reduction of 5 orders of magnitude is gained with addition of 1-μm-thick \(\hbox {PureB}/\upalpha \hbox {-Si}\) stack for the array processed on a p-type substrate, while the same reduction is achieved with a 1-μm-thick highly-doped Si layer (As, \(1.1\times 10^{20}\, \hbox {cm}^{-3}\)) for an array processed on an n-type substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aeschlimann, M., Brixner, T., Differt, D., Heinzmann, U., Hensen, M., Kramer, C., Lükermann, F., Melchior, P., Pfeiffer, W., Piecuch, M., Schneider, C., Stiebig, H., Strüber, C., Thielen, P.: Perfect absorption in nanotextured thin films via Anderson-localized photon modes. Nat. Photonics 9, 663–668 (2015)

    Article  ADS  Google Scholar 

  • Calandri, N., Sanzaro, M., Lorenzo, M., Savoia, C., Tosi, A.: Optical crosstalk in InGaAs/InP SPAD array: analysis and reduction with FIB-etched trenches. IEEE Photon. Technol. Lett. 28, 1767–1770 (2016)

    Article  ADS  Google Scholar 

  • Claudio, G., Jeyned, C., Kirkby, K.J., Sealy, B.J., Gwilliam, R., Low, R.: Electrical behaviour of arsenic implanted silicon wafers at large tilt angle. In: Proceeding of the 14th International Conference on Ion Implantation Technology, p. 614 (2002)

  • Differt, D., Soleymanzadeh, B., Lükermann, F., Strüber, C., Pfeiffer, W., Stiebig, H.: Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing. Solar Energy Mater. Solar Cells 135, 72–77 (2015)

    Article  Google Scholar 

  • Dutta, S., Hueting, R.J.E., Annema, A., Qi, L., Nanver, L.K., Schmitz, J.: Opto-electronic modeling of light emission from avalanche-mode silicon p\(^{+}\)n junctions. J. Appl. Phys 118, 114506-1–114506-10 (2015)

    Article  ADS  Google Scholar 

  • Ficorella, A., Pancheri, L., Dalla Betta, G.-F., Brogi, P., Collazuol, G., Marrochesi, P.S., Morsani, F., Ratti, L., Savoy-Navarro, A.: Crosstalk mapping in CMOS SPAD arrays. In: Proceeding of 46th Solid-State Device Research Conference (ESSDERC), p. 101 (2016)

  • Guerrieri, F., Bellisai, S., Tosi, A., Padovini, G., Zappa, F.: SPAD arrays for parallel photon counting and timing. In: Proceeding of 23rd Annual Meeting of the IEEE Photonics Society, p. 355 (2010)

  • Grigorovci, R., Vancu, A.: Optical constants of amorphous silicon films near the main absorption edge. Thin Solid Films 2, 105–110 (1968)

    Article  ADS  Google Scholar 

  • Inada, T., Nishida, A., Kanazawa, M., Hasebe, H.: Annealing characteristics and electrical properties of 1MeV arsenic ion implanted layers in silicon. J. Appl. Phys 68, 5555–5563 (1990)

    Article  ADS  Google Scholar 

  • Jellison, G.E., Modine, F.A., White, C.W., Wood, R.F., Young, R.T.: Optical properties of heavily doped silicon between 1.5 and 4.1 eV. Phys. Rev. Lett. 46, 1414–1417 (1981)

    Article  ADS  Google Scholar 

  • Keshavarz Hedayati, M., Elbahri, M.: Antireflective coatings: conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Materials 9(6), 497, 1–22 (2016)

  • Kindt, W.J., van Zeijl, H.W., Middelhoek, S.: Optical cross talk in geiger mode avalanche photodiode arrays: modeling, prevention and measurement. In: Proceeding of 28th European Solid-State Device Research Conference, p. 192 (1998)

  • Leitner, T., Feiningstein, A., Turchetta, R., Coath, R., Chick, S., Visokolov, G., Savuskan, V., Javitt, M., Gal, L., Brouk, I., Bar-Lev, S., Nemirovsky, Y.: Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology. IEEE Trans. Electron Dev. 60, 1982–1988 (2013)

    Article  ADS  Google Scholar 

  • McIntosh, K.A.: Cross-talk suppression in Geiger-mode avalanche photodiodes. US Application 2011/0169117 A1 (2011)

  • Maleki, P., Scholtes, T.L.M., Popadić, M., Sarubbi, F., Lorito, G., Milosavljevic, S., de Boer, W.B., Nanver, L.K.: Deep p\(^{+}\) junctions formed by drive-in from pure boron depositions. In: Proceeding of International Workshop on Junction Technology (IWJT), p. 1 (2010)

  • Osrečki, Ž., Knežević, T., Nanver, L.K., Suligoj, T.: Indirect optical crosstalk reduction by highly-doped backside layer in PureB single-photon avalanche diode arrays. In: Proceeding of Numerical Simulation of Optoelectronic Devices (NUSOD), p. 69 (2017)

  • Qi, L., Mok, K.R.C., Aminian, M., Charbon, M., Nanver, L.K.: UV-sensitive low dark-count PureB single-photon avalanche diode. IEEE Trans. Electron Dev. 61, 3768–3774 (2014)

    Article  ADS  Google Scholar 

  • Rech, I., Ingargiola, A., Spinelli, R., Labanca, I., Marangoni, S., Ghioni, M., Cova, S.: A new approach to optical crosstalk modeling in single-photon avalanche diodes. IEEE Photon. Technol. Lett. 20, 330–332 (2008)

    Article  ADS  Google Scholar 

  • Rosado, J., Hidalgo, S.: Characterization and modeling of crosstalk and afterpulsing in Hamamatsu silicon photomultipliers. JIST 10, P10031 (2015)

    Google Scholar 

  • Schinke, S., Peest, P.C., Schmidt, J., Brendel, R., Bothe, K., Vogt, M.R., Kröger, I., Winter, S., Schirmacher, A., Lim, S., Nguyen, H.T., MacDonald, D.: Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 5, 067168-1–067168-22 (2015)

    Article  ADS  Google Scholar 

  • Schwartz, D.E., Charbon, E., Shepard, K.L.: A single-photon avalanche diode array for fluorescence lifetime imaging microscopy. IEEE J. Solid State Circuits 43, 2546–2557 (2008)

    Article  Google Scholar 

  • Synopsys: Sentaurus Device User Guide, J-2014.09. Synopsys, Mountain View, CA, USA, (2014)

  • Tsukamoto, K., Akasaka, Y., Kijima, K.: Thermal diffusion of ion-implanted arsenic in silicon. Jpn. J. Appl. Phys. 19, 87–95 (1980)

    Article  ADS  Google Scholar 

  • Xu, H., Braga, L.H.C., Stoppa, D., Pancheri, L.: Characterization of single-photon avalanche diode arrays in 150nm CMOS technology. In: 2015 XVIII AISEM Annual Conference, p. 1 (2008)

  • Yuan, P.: Methods and systems for reducing crosstalk in avalanche photodiode detector arrays. US Patent 9,395,182 B1 (2016)

Download references

Acknowledgements

This work was supported by the Croatian Science Foundation under Contract No. 9006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Osrečki.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 17.

Guest edited by Matthias Auf der Maur, Weida Hu, Slawomir Sujecki, Yuh-Renn Wu, Niels Gregersen, Paolo Bardella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osrečki, Ž., Knežević, T., Nanver, L.K. et al. Indirect optical crosstalk reduction by highly-doped backside layer in single-photon avalanche diode arrays. Opt Quant Electron 50, 152 (2018). https://doi.org/10.1007/s11082-018-1415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1415-2

Keywords

Navigation