Skip to main content
Log in

Tunnel injection transistor laser for optical interconnects

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Transistor laser (TL) is already an established potential candidate for high speed optical interconnects and present day optical communication networks. This paper investigates theoretically the possibility of having lower base threshold current density and enhanced modulation bandwidth by inserting a tunnel injection structure in a TL having multiple quantum wells (MQW) in the base of the heterojunction bipolar transistor. Transfer of injected charge carriers from bulk to low dimensional nano-structure is assumed to occur via virtual energy states, which contributes to the terminal current. Small signal modulation response is obtained by solving the Statz–De Mars laser rate equations. The optimum threshold base current, confinement of carrier, light power outputs etc. are estimated for three QWs positioned at distances of 39, 59, and 79 nm from the emitter-base junction across the base. Incorporation of tunneling structure substantially lowers the base threshold current and increases the modulation bandwidth as compared to usual MQW transistor laser structure. The changes are more prominent with increasing tunneling probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed, M., El-Lafi, A.: Analysis of small signal intensity modulation of semiconductor lasers taking account of gain suppression. Pramana J. Phys. 71, 99–115 (2008)

    Article  ADS  Google Scholar 

  • Basu, R., Mukhopadhyay, B., Basu, P.K.: Estimated threshold base current and light power output of a transistor laser with InGaAs quantum well in GaAs base. Semicond. Sci. Technol. 26, 105014-1–105014-6 (2011)

    Article  ADS  Google Scholar 

  • Basu, R., Mukhopadhyay, B., Basu, P.K.: Analytical theory of a small signal modulation response of a transistor laser with dots-in-well in the base. Semicond. Sci. Technol. 27, 015022-1–015022-7 (2012a)

    Article  ADS  Google Scholar 

  • Basu, R., Mukhopadhyay, B., Basu, P.K.: Modeling of current gain compression in common emitter mode of a transistor laser above threshold base current. J. Appl. Phys. 111, 083103-1–083103-7 (2012b)

    ADS  Google Scholar 

  • Basu, R., Mukhopadhyay, B., Basu, P.K.: Modeling resonance free modulation response in transistor lasers with single and multiple quantum wells in the base. IEEE Photon. J. 4(5), 1572–1581 (2012c)

    Article  Google Scholar 

  • Basu, Rikmantra, Mukhopadhyay, Bratati, Basu, P.K.: Analytical model for threshold-base current of a transistor laser with multiple quantum wells in the base. IET Optoelectron. 7(3), 71–76 (2013)

    Article  Google Scholar 

  • Basu, P.K., Mukhopadhyay, B., Basu, R.: Semiconductor laser theory. CRC Press (T&F), Boca Raton (2015). (Ch. 15)

    Google Scholar 

  • Bhattacharya, P., Singh, J., Yoon, H., Zhang, X., Gutierrez-Aitken, A., Lam, Y.: Tunneling injection lasers: a new class of lasers with reduced hot carrier effects. IEEE J. Quantum Electron. 32(9), 1620–1629 (1996)

    Article  ADS  Google Scholar 

  • Dixon, F., et al.: Transistor laser with emission wavelength at 1544 nm. Appl. Phys. Lett. 93(15), 021111-1–021111-3 (2008)

    ADS  Google Scholar 

  • Duan, Z., Shi, W., Chrostowsky, L., Huang, X., Zhou, N., Chai, G.: Design and epitaxy of 1.5 μm InGaAsP-InP MQW material for a transistor laser. Opt. Exp. 18(2), 1501–1509 (2010)

    Article  ADS  Google Scholar 

  • Faraji, B., Pulfrey, D.L., Chrostowski, L.: Small-signal modelling of the transistor laser including the quantum capture and escape lifetimes. Appl. Phys. Lett. 93(10), 103509-1–103509-3 (2008)

    Article  ADS  Google Scholar 

  • Faraji, B., Shi, W., Pulfrey, D.L., Chrostowski, L.: Analytical modeling of the transistor laser. IEEE J. Sel. Top. Quantum Electron. 13, 594–603 (2009)

    Article  Google Scholar 

  • Feng, M., Holonyak Jr., N., James, A., Cimino, K., Walter, G., Chan, R.: Carrier lifetime and modulation bandwidth of a quantum well AlGaAs/ InGaP/ GaAs/ InGaAs transistor laser. Appl. Phys. Lett. 89, 131504-1–131504-3 (2006)

    Google Scholar 

  • Feng, M., Holonyak Jr., N., Then, H.W., Walter, G.: Charge control analysis of transistor laser operation. Appl. Phys. Lett. 91, 053501-1–053501-3 (2007)

    ADS  Google Scholar 

  • Feng, M., Then, H.W., Holonyak Jr., N., Walter, G., James, A.: Resonance-free frequency response of a semiconductor laser. Appl. Phys. Lett. 95, 033509-1–033509-3 (2009)

    ADS  Google Scholar 

  • Holonyak Jr., N., Feng, M.: The transistor laser. IEEE Spectr. 43(2), 50–55 (2006)

    Article  Google Scholar 

  • Huang, Y., Ryou, J.H., Dupuis, R.D., Dixon, F., Feng, N., Holonyak Jr., N.: InP/ InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer. J. Appl. Phys. 109, 063106-1–063106-6 (2011)

    ADS  Google Scholar 

  • Kucharczyk, M., Wartak, M.S., Weetman, P., Lau, P.-K.: Theoretical modeling of multiple quantum well lasers with tunneling injection and tunneling transport between quantum wells. J. Appl. Phys. 86, 3218–3228 (1999)

    Article  ADS  Google Scholar 

  • Sato, Noriaki, et al.: Room-temperature continuous-wave operation of npn–AlGaInAs transistor laser emitting at1.3-μm wavelength. IEEE Photon. Technol. Lett. 25(8), 728–730 (2013)

    Article  ADS  Google Scholar 

  • Shirao, M., Sato, T., Takino, Y., Sato, N., Nishiyama, N., Arai, S.: Room-temperature continuous-wave operation of 1.3-μm transistor laser with AlGaInAs/InP quantum wells. Appl. Phys. Express 4(7), 072101-1–072101-3 (2011a)

    Article  ADS  Google Scholar 

  • Shirao, M., Lee, S., Nishiyama, N., Arai, S.: Large signal analysis of a Transistor Laser. IEEE J. Quantum Electron. 47(3), 359–367 (2011b)

    Article  ADS  Google Scholar 

  • Shirao, M., Sato, T., Sato, N., Nishiyama, N., Arai, S.: Room temperature operation of npn-AlGaInAs/InP multiple quantum well transistor laser emitting at 1.3-μm wavelength. Opt. Express 20(4), 3983–3989 (2012)

    Article  ADS  Google Scholar 

  • Taghavi, I., Kaatuzian, H., Leburton, J.P.: Bandwidth enhancement and optical performances of multiple quantum well transistor lasers. Appl. Phys. Lett. 100, 231114-1–231114-5 (2012)

    Article  ADS  Google Scholar 

  • Then, H.W., Feng, M., Holonyak Jr., N.: Microwave circuit model of the three-port transistor laser. J. Appl. Phys. 107, 094509-1–094509-7 (2010)

    Article  ADS  Google Scholar 

  • Then, H.W., Feng, M., Holonyak Jr., N.: The transistor laser: theory and experiment. Proc. IEEE 101(10), 2271–2298 (2013)

    Article  Google Scholar 

  • Walter, G., Holonyak Jr., N., Feng, M., Chan, R.: Laser operation of a heterojunction bipolar light-emitting transistor. Appl. Phys. Lett. 85, 4768–4770 (2004)

    Article  ADS  Google Scholar 

  • Zhang, L., Leburton, J.P.: Modeling of the transient characteristics of heterojunction bipolar transistor lasers. IEEE J. Quantum Electron. 45(4), 359–366 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NK and RB are thankful to Professor Ajay K. Sharma, Director, National Institute of Technology (NIT) Delhi for his constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Mukhopadhyay, B. & Basu, R. Tunnel injection transistor laser for optical interconnects. Opt Quant Electron 50, 160 (2018). https://doi.org/10.1007/s11082-018-1412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1412-5

Keywords

Navigation