Skip to main content
Log in

Temperature effects of the electron probability density on quantum pseudodot qubit

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

With variational method of Pekar type and quantum statistics theory, the temperature effects on electron probability density (EPD) of a strongly-coupling electron-LO-phonon (polaron) in RbCl material quantum pseudodots (QPDs) are studied. The qubit in the QPD system can be built by the two-level energy states. The EPD periodically oscillates in the special material QPD with a certain period as the electron is located in the superposition state of the ground and first excited states. The changing functions of EPD and the oscillating period with the system temperature and the chemical potential of the two-dimensional electron gas are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247–255 (2000)

    Article  ADS  MATH  Google Scholar 

  • Chen, Y.J., Xiao, J.L.: Temperature effects of parabolic linear bound potential and Coulomb bound potential quantum dot qubit. Commun. Theor. Phys. 52(4), 601–605 (2009)

    Article  ADS  MATH  Google Scholar 

  • Chen, Y.J., Xiao, J.L.: The temperature effects on the parabolic quantum dot qubit in the electric field. J. Low Temp. Phys. 170(1–2), 60–67 (2013)

    Article  ADS  Google Scholar 

  • Cui, Z., Ke, X., Li, E., Liu, T.: Electronic and optical properties of titanium-doped GaN nanowires. Mater. Des. 96, 409–415 (2016)

    Article  Google Scholar 

  • Cui, Z., Li, E., Ke, X., Zhao, T., Yang, Y., Ding, Y., Liu, T., Qu, Y., Xu, S.: Adsorption of alkali-metal atoms on GaN nanowires photocathode. Appl. Surf. Sci. 423, 829–835 (2017)

    Article  ADS  Google Scholar 

  • Devreese, J.T.: Polarons in Ionic Crystals and Polar Semiconductors, p. 721. North-Holland, Amsterdam (1972)

    Google Scholar 

  • Ding, Z.H., Sun, Y., Xiao, J.L.: Optical phonon effect in an asymmetric quantum dot qubit. Int. J. Quantum Inf. 10(07), 1250077-1–1250077-9 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, J., Shi, M., Wu, J., et al.: Implementing universal multiqubit quantum logic gates in three-and four-spin systems at room temperature. Phys. Rev. A 63(4), 042302-1–042302-5 (2001)

    Article  ADS  Google Scholar 

  • Gorman, J., Hasko, D. G., Williams, D. A.: Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett. 95(9), 090502 (2005)

    Article  ADS  Google Scholar 

  • Grishin, A., Yurkevich, I.V., Lerner, I.V.: Low-temperature decoherence of qubit coupled to background charges. Phys. Rev. B 72(6), 060509-1–060509-4 (2005)

    Article  ADS  Google Scholar 

  • Imamog, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204–4207 (1999)

    Article  ADS  Google Scholar 

  • Landau, L.D., Pekar, S.I.: Effective mass of a polaron. J. Exp. Theor. Phys. 18, 419–423 (1948)

    Google Scholar 

  • Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120–126 (1998)

    Article  ADS  Google Scholar 

  • Ma, X.J., Qi, B., Xiao, J.L.: Coulomb impurity potential RbCl quantum pseudodot qubit. J. Low Temp. Phys. 180(3–4), 315–320 (2015)

    Article  ADS  Google Scholar 

  • Mooij, J.E., Orlando, T.P., Levitov, L., Tian, L., Van der Wal, C.H., Lloyd, S.: Josephson persistent-current qubit. Science 285(5430), 1036–1039 (1999)

    Article  Google Scholar 

  • Pekar, S.I., Deigen, M.F.: The quantum states and the optical transitions of an electron in a polaron and in a color center in a crystal. ZH. Eksp. Teor. Fiz., (USSR) 18(6), 481–486 (1948)

    Google Scholar 

  • Sun, J.K., Li, H.J., Xiao, J.L.: The temperature effect of the triangular bound potential quantum dot qubit. Superlattices Microstruct. 46(3), 476–482 (2009)

    Article  ADS  Google Scholar 

  • Sun, Y., Ding, Z.H., Xiao, J.L.: The effect of phonons in RbCl quantum pseudodot qubits. J. Electron. Mater. 45(7), 3576–3580 (2016)

    Article  ADS  Google Scholar 

  • Tiotsop, M., Fotue, A.J., Fautso, G.K., Kenfack, C.S., Fotsin, H.B., Fai, L.C.: Decoherence time, hydrogenic-like impurity effect and Shannon entropy on polaron in RbCl triangular quantum dot qubit. Superlattices Microstruct. 103, 70–77 (2017)

    Article  ADS  Google Scholar 

  • Trauzettel, B., Bulaev, D.V., Loss, D., Burkard, G.: Spin qubits in graphene quantum dots. Nat. Phys. 3(3), 192–196 (2007)

    Article  Google Scholar 

  • Xiao, J.L.: Influences of temperature and coulomb bound potential on the properties of quantum rod qubit. Superlattices Microstruct. 60, 248–256 (2013)

    Article  ADS  Google Scholar 

  • Xiao, J.L.: Effects of electric field and temperature on RbCl asymmetry quantum dot qubit. J. Phys. Soc. Jpn. 83(3), 034004-1–034004-4 (2014)

    Article  ADS  Google Scholar 

  • Xiao, J.L.: The effect of magnetic field on RbCl quantum pseudodot qubit. Mod. Phys. Lett. B 29(19), 155009817 (2015)

    Article  Google Scholar 

  • Xiao, W., Wang, H.W.: Effect of temperature on the coherence time of a parabolic quantum dot qubit. Low Temp. Phys. 41(3), 203–206 (2015)

    Article  ADS  Google Scholar 

  • You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68(6), 064509-1–064509-7 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

Thanks to higher education institution scientific research project in Inner Mongolia No. NJZY 16183 and National Science Foundation of China No. 11464033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, XJ., Xiao, JL. Temperature effects of the electron probability density on quantum pseudodot qubit. Opt Quant Electron 50, 144 (2018). https://doi.org/10.1007/s11082-018-1407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1407-2

Keywords

Navigation