Skip to main content
Log in

Analytical solution of the Korteweg–de Vries equation and microtubule equation using the first integral method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the first integral method is applied to solve the Korteweg–de Vries equation with dual power law nonlinearity and equation of microtubule as nonlinear RLC transmission line. This method is manageable, straightforward and a powerful tool to find the exact solutions of nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akram, G., Batool, F.: Solitary wave solutions of the Schafer–Wayne short-pulse equation using two reliable methods. Opt. Quantum Electron. 49, 1–9 (2017a)

    Article  Google Scholar 

  • Akram, G., Batool, F.: A class of traveling wave solutions for space-time fractional biological population model in mathematical physics. Indian J. Phys. 91(10), 1145–1148 (2017b)

    Article  ADS  Google Scholar 

  • Alam, M.N., Alam, M.M.: An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules. J. Taibah Univ. Sci. 11(6), 939–948 (2017)

    Article  MathSciNet  Google Scholar 

  • Alquran, M., Al-Omary, R., Katatbeh, Q.: New explicit solutions for homogeneous Kdv equations of thrid order by trigonometric and hyperbolic function methods. Appl. Appl. Math. 7(1), 211–225 (2006)

    MATH  Google Scholar 

  • Batool, F., Akram, G.: Application of extended Fan sub-equation method to \(({{\bf 1}+ {\bf 1}})\)-dimensional nonlinear dispersive modified Benjamin–Bona–Mahony equation with fractional evolution. Opt. Quantum Electron. 49(11), 1–9 (2017a)

    Article  Google Scholar 

  • Batool, F., Akram, G.: On the solitary wave dynamics of complex Ginzburg–Landau equation with cubic nonlinearity. Opt. Quantum Electron. 49(4), 1–9 (2017b)

    Article  Google Scholar 

  • Batool, F., Akram, G.: Solitary wave solutions of (2+ 1)-dimensional soliton equation arising in mathematical physics. Optik Int. J. Light Electron Opt. 144, 156–162 (2017c)

    Article  Google Scholar 

  • Bekir, A., Aksoy, E., Güner, Ö.: Bright and dark soliton solutions for variable-coefficient diffusion reaction and modified Kortewegde Vries equations. Phys. Scr. 85(3), 1–6 (2012)

    Article  MATH  Google Scholar 

  • Bourbaki, N.: Commutative Algebra. Addison-Wesley, Paris (1972)

    MATH  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M.: New solitary and optical wave structures to the Korteweg–de Vries equation with dual-power law nonlinearity. Opt. Quantum Electron. 48(12), 1–14 (2016)

    Article  Google Scholar 

  • Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite–Gaussian solitons of a \((3+1)\) dimensional partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 84, 1157–1161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Darvishi, M.T., Arbabi, S., Najafi, M., Wazwaz, A.M.: Traveling wave solutions of a (2+1)-dimensional Zakharov-like equation by the first integral method and the tanh method. Optik 127, 6312–6321 (2016)

    Article  ADS  Google Scholar 

  • Ding, T.R., Li, C.Z.: Ordinary Differential Equations. Peking University Press, Peking (1996)

    Google Scholar 

  • Elsayed, M.E.Z., Yasser, A.A., Reham, M.A.S.: The improved generalized Riccati equation mapping method and its application for solving a nonlinear partial differential equation (PDE) describing the dynamics of ionic currents along microtubules. Sci. Res. Essays 9(8), 238–248 (2014)

    Article  Google Scholar 

  • Feng, Z.: On explicit exact solutions to the compound Burgers KdV equation. Phys. Lett. A 293, 57–66 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Güner, Ö., Bekir, A., Moraru, L., Biswas, A.: Bright and dark soliton solutions of the generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony nonlinear evolution equation. Proc. Rom. Acad. Ser. A 16, 422–429 (2015)

    MathSciNet  Google Scholar 

  • Gurefe, Y., Misirli, E.: Exp-function method for solving nonlinear evolution equations with higher order nonlinearity. Comput. Math. Appl. 61, 2025–2030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar, D., Singh, J., Kiliçman, A.: An efficient approach for fractional Harry Dym equation by using Sumudu transform. Abstr. Appl. Anal. 2013, 1–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Minoura, I., Muto, E.: Dielectric measurement of individual microtubules using the electroorientation method. Biophys. J. 90, 3739–3748 (2006)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoullis equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Mokhtari, R.: Exact solutions of the Harry–Dym equation. Commun. Theor. Phys. 55(2), 204–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Postoleche, M., Gurefe, Y., Sonmezoglu, A., Ekici, m, Misirli, E.: Extented trail equation method and applications to some nonlinear problems. U.P.B. Sci. Bull. 76(2), 1223–7027 (2014)

    Google Scholar 

  • Salas, A., Kumer, S., Yildririm, A., Biswas, A.: Cnoidal waves, solitary waves and painleve analysis of the 5th order KdV equation with dual-power law nonlinearity. Proc. Rom. Acad. 14(1), 28–34 (2013)

    MathSciNet  Google Scholar 

  • Sataric, M.V., Ilic, D.I., Ralevic, N., Tuszynski, J.A.: A nonlinear model of ionic wave propagation along microtubules. Eur. Biophys. J. 38(5), 637–647 (2009)

    Article  Google Scholar 

  • Sekulic, D.L., Sataric, M.V., Živanov, M.B.: Symbolic computation of some new nonlinear partial differential equations of nanobiosciences using modified extended tanh-function method. Appl. Math. Comput. 218(7), 3499–3506 (2011)

    MathSciNet  MATH  Google Scholar 

  • Triki, H., Wazwaz, A.M.: Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients. Phys. Lett. A 373, 2162–2165 (2009)

    Article  ADS  MATH  Google Scholar 

  • Wang, M., Li, X., Zhang, J.: The \((\frac{G^{\prime }}{G})-\)expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: A sine–cosine method for handlingnonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)

    Article  MATH  Google Scholar 

  • Wazwaz, A.M.: The tanh method and a variable separated ODE method for solving double sine-Gordon equation. Phys. Lett. A 350, 367–370 (2006)

    Article  ADS  MATH  Google Scholar 

  • Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  • Zhang, H.: New application of the \((\frac{G^{\prime }}{G})-\)expansion method. Commun. Nonlinear Sci. 14, 3220–3225 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazala Akram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, G., Mahak, N. Analytical solution of the Korteweg–de Vries equation and microtubule equation using the first integral method. Opt Quant Electron 50, 145 (2018). https://doi.org/10.1007/s11082-018-1401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1401-8

Keywords

Navigation