Skip to main content
Log in

Doping optimization for optoelectronic devices

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present a mathematical and numerical framework for the optimal design of doping profiles for optoelectronic devices using methods from mathematical optimization. With the goal to maximize light emission and reduce the threshold of an edge-emitting laser, we consider a drift-diffusion model for charge transport and include modal gain and total current into a cost functional, which we optimize in cross sections of the emitter. We present 1D and 2D results for exemplary setups that point out possible routes for device improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auf der Maur, M.: A multiscale simulation environment for electronic and optoelectronic devices. Ph.D. thesis, University of Rome Tor Vergata (2008)

  • Bandelow, U., Gajewski, H., Hünlich, R.: Fabry-Perot Lasers: Thermodynamics-Based Modeling, pp. 63–85. Springer, New York (2005)

    Google Scholar 

  • Barget, M.R., Virgilio, M., Capellini, G., Yamamoto, Y., Schroeder, T.: The impact of donors on recombination mechanisms in heavily doped Ge/Si layers. J. Appl. Phys. 121(24), 245701 (2017)

    Article  ADS  Google Scholar 

  • Burger, M., Pinnau, R.: Fast optimal design of semiconductor devices. SIAM J. Appl. Math. 64(1), 108–126 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Dutt, B., Sukhdeo, D.S., Nam, D., Vulovic, B.M., Yuan, Z., Saraswat, K.C.: Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping. IEEE Photonics J. 4(5), 2002–2009 (2012)

    Article  Google Scholar 

  • Hinze, M., Pinnau, R.: An optimal control approach to semiconductor design. Math. Models Methods Appl. Sci. 12(01), 89–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Hinze, M., Pinnau, R.: Second-order approach to optimal semiconductor design. J. Optim. Theory Appl. 133(2), 179–199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L.C., Michel, J.: Ge-on-Si laser operating at room temperature. Opt. Lett. 35(5), 679–681 (2010)

    Article  ADS  Google Scholar 

  • Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer, Berlin (1986)

    Book  Google Scholar 

  • Mielke, A., Peschka, D., Rotundo, N., Thomas, M.: Gradient structures for optoelectronic models of semiconductors. In: Matheon preprint (to appear in Proceedings of ECMI 2016) (2016)

  • Nagavarapu, V., Jhaveri, R., Woo, J.C.: The tunnel source (pnpn) n-mosfet: a novel high performance transistor. IEEE Trans. Electron Dev. 55(4), 1013–1019 (2008)

    Article  ADS  Google Scholar 

  • Peschka, D., Thomas, M., Glitzky, A., Nürnberg, R., Gärtner, K., Virgilio, M., Guha, S., Schroeder, T., Capellini, G., Koprucki, T.: Modeling of edge-emitting lasers based on tensile strained germanium microstrips. IEEE Photonics J. 7(3), 1–15 (2015)

    Article  Google Scholar 

  • Peschka, D., Rotundo, N., Thomas, M.: Towards doping optimization of semiconductor lasers. J. Comput. Theor. Transp. 45(5), 410–423 (2016)

    Article  MathSciNet  Google Scholar 

  • Weiser, M., Schiela, A., Deuflhard, P.: Asymptotic mesh independence of Newton’s method revisited. SIAM J. Numer. Anal. 42(5), 1830–1845 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the German Research Foundation (DFG) via project B4 in SFB 787 and by the Einstein Foundation Berlin (ECMath) via the Matheon projects OT1/OT8. The authors thank P. Farrell, M. Liero, A. Glitzky and T. Koprucki for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Peschka.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 17.

Guest edited by Matthias Auf der Maur, Weida Hu, Slawomir Sujecki, Yuh-Renn Wu, Niels Gregersen, Paolo Bardella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peschka, D., Rotundo, N. & Thomas, M. Doping optimization for optoelectronic devices. Opt Quant Electron 50, 125 (2018). https://doi.org/10.1007/s11082-018-1393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1393-4

Keywords

Navigation