Advertisement

Optical characterization of tin containing novel chalcogen rich glassy semiconductors

Article
  • 48 Downloads

Abstract

Amorphous thin film materials with different compositions of Se80−xTe20Snx (0 ≤ x ≤ 10) system have been deposited on glass substrates by a well known thermal evaporation technique. Structural characterization of different compositions of aforementioned system has been done by Raman spectroscopy. The optical properties of thin films have been studied in the wavelength range 200–1100 nm by the utilization of the optical absorbance spectra of deposited thin films. To calculate the optical band gap from the optical absorption spectra, we have used Tauc model that follows the mechanism of allowed ‘non-direct electronic transition’. Subsequently, we have determined the energy band gap, metallization criterion and refractive index of thin films of aforesaid system. The variation in optical properties with composition has been interpreted in terms of density of defect states.

Keywords

Amorphous thin films Optical absorbance Optical band gap Extinction coefficient Metallization 

Notes

Acknowledgements

NM is thankful to his university for providing grant under the consumable head of DST-Purse programme-(5050). AKS is thankful to CSIR, New Delhi, India for providing financial support. We are also thankful to Department of Metallurgy, IIT BHU, Varanasi for providing SEM facility.

References

  1. Abdel-Rahim, M.A., Gaber, A., Abu-Sehly, A.A., Abdelazim, N.M.: Crystallization study of Sn additive Se–Te chalcogenide alloys. Thermochim. Acta 566, 274–280 (2013a)CrossRefGoogle Scholar
  2. Abdel-Rahim, M.A., Gaber, A., Abu-Sehly, A.A., Abdel Azim, N.M.: Crystal growth kinetics in Se87. 5–Te10–Sn2. 5 glass. J. Non-Cryst. Solids 376, 158–164 (2013b)ADSCrossRefGoogle Scholar
  3. Abdel-Wahab, F.: Observation of phase separation in some Se–Te–Sn chalcogenide glasses. Phys. B 406, 1053–1059 (2010)ADSCrossRefGoogle Scholar
  4. Adam, A.B.: Infrared and Raman studies on Snx–Sb5–Se95–x chalcogenide glasses. J. King Saud Univ. Sci. 21, 93–97 (2009)CrossRefGoogle Scholar
  5. Aggarwal, I.D., Sanghera, J.S.: Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mater. 4, 665–678 (2002)Google Scholar
  6. Ahmada, A., Khanb, S.A., Sinha, K., Kumar, L., Khan, Z.H., Zulfequare, M., Husaine, M.: Optical characterization of vacuum evaporated a-Se80Te20–xCux thin films. Vacuum 82, 608–612 (2008)ADSCrossRefGoogle Scholar
  7. Brilland, L., Smektala, F., Renversez, G., Chartier, T., Troles, J., Nguyen, T.N., Traynor, N., Monteville, A.: Fabrication of complex structures of holey fibers in chalcogenide glass. Opt. Express 14, 1280–1285 (2006)ADSCrossRefGoogle Scholar
  8. Chiba, R., Funakoshi, N.: Crystallization of vacuum deposited Te–Se–Cu alloy film. J. Non-Cryst. Solids 105, 149–154 (1988)ADSCrossRefGoogle Scholar
  9. Dimitrov, V., Komatsu, T.: Effect of interionic interaction on the electronic polarizability, optical basicity and binding energy of simple oxides. J. Ceram. Soc. Jpn. 107, 1012–1018 (1999)CrossRefGoogle Scholar
  10. Dimitrov, V., Sakka, S.: Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 79, 1741–1745 (1996)ADSCrossRefGoogle Scholar
  11. Duffy, J.A.: Chemical bonding in the oxides of the elements: a new appraisal. J. Sol. Stat. Chem. 62, 145–157 (1986)ADSCrossRefGoogle Scholar
  12. Georgieva, I., Nesheva, D., Dimitrov, D., Kozhukharov, V.: Influence of crystallization on electrical and optical properties of Te–Se–Sn and Te–Se–Sn–O films. J. Non-Cryst. Solids 160, 105–110 (1993)ADSCrossRefGoogle Scholar
  13. Humlicek, J., Roseler, A., Zettler, T., Kekoua, M.G., Khoutsishvili, E.V.: Infrared refractive index of germanium–silicon alloy crystals. Appl. Opt. 31, 90–94 (1992)ADSCrossRefGoogle Scholar
  14. Kaur, G., Komatsu, T., Thangaraj, R.: Crystallization kinetics of bulk amorphous Se–Te–Sn system. J. Mater. Sci. 35, 903–906 (2000)ADSCrossRefGoogle Scholar
  15. Kumar, S., Laxmi, G.B.V.S., Husain, M., Zulfequar, M.: Effect of SHI irradiation on Se–Te–Sn thin films. Eur. Phys. J. Appl. Phys. 35, 155–158 (2006)ADSCrossRefGoogle Scholar
  16. Maharjan, N.B., Singh, K., Saxena, N.S.: Calorimetric studies in Se75Te25–xSnx chalcogenide glasses. Phys. Stat. Sol. 195, 305–310 (2003)ADSCrossRefGoogle Scholar
  17. Mehta, N.: Applications of chalcogenide glasses in electronics and optoelectronics: a review. J. Sci. Ind. Res. 65, 777–786 (2006)Google Scholar
  18. Mishra, M., Chauhan, R., Katiyar, A., Srivastava, K.K.: Optical properties of amorphous thin film of Se–Te–Ag system prepared by using thermal evaporation technique. Prog. Nat. Sci. Mat. Int. 21, 36–39 (2011)CrossRefGoogle Scholar
  19. Monro, T.M., West, Y.D., Hewak, D.W., Broderick, N.G.R., Richardson, D.J.: Chalcogenide holey fibres. Electron. Lett. 36, 1998–2000 (2000)CrossRefGoogle Scholar
  20. Morquez, E., Wagner, T., Gonzalez-Leal, J.M., Bernal-Olive, A.M., Prieto-Aleon, R., Jimenez-Garay, R., Ewen, P.J.S.: Controlling the optical constants of thermally-evaporated Ge10Sb30S60 chalcogenide glass films by photodoping with silver. J. Non-Cryst. Solids 274, 62–68 (2000)ADSCrossRefGoogle Scholar
  21. Mott,N.F., Davis, E.A.: Electronic processes in non-crystalline materials. Clarendon Press, Oxford university, pp 273–300 (1971). Work ID: 9122384Google Scholar
  22. Phillips, J.C.: Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34, 153–181 (1979)ADSCrossRefGoogle Scholar
  23. Phillips, J.C.: Topology of covalent non-crystalline solids II: medium-range order in chalcogenide alloys and A–Si(Ge). J. Non-Cryst. Solids 43, 37–77 (1981a)ADSCrossRefGoogle Scholar
  24. Phillips, J.C.: Topology of covalent non-crystalline solids III: kinetic model of the glass transition. J. Non-Cryst. Solids 44, 17–30 (1981b)ADSCrossRefGoogle Scholar
  25. Phillips, J.C., Thorpe, M.F.: Constraint theory, vector percolation and glass formation. Solid State Commun. 53, 699–702 (1985)ADSCrossRefGoogle Scholar
  26. Poborchii, V.V.: Polarized Raman and optical absorption spectra of the mordenite single crystals containing sulfur, selenium, or tellurium in the one-dimensional nanochannels. Chem. Phys. Lett. 251, 230–234 (1996)ADSCrossRefGoogle Scholar
  27. Ruan, Y.L., Li, W.T., Jarvis, R., Madsen, N., Rode, A., Luther-Davies, B.: Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching. Opt. Express 12, 5140–5145 (2004)ADSCrossRefGoogle Scholar
  28. Sanghera, J.S., Shaw, L.B., Busse, L.E., Nguyen, V.Q., Pureza, P.C., Cole, B.C., Harbison, B.B., Aggarwal, I.D., Mossadegh, R., Kung, F., Talley, D., Roselle, D., Miklos, R.: Development and infrared applications of chalcogenide glass optical fibers. Fiber Integr. Opt. 19, 251–274 (2000)ADSCrossRefGoogle Scholar
  29. Sanghera, J.S., Shaw, L.B., Aggarwal, I.D.: Applications of chalcogenide glass optical fibers. C. R. Chim. 5, 873–883 (2002)CrossRefGoogle Scholar
  30. Saraswat, V.K., Kishore, V., Deepika, K.S., Saxena, N.S., Sharma, T.P.: Band gap studies on Se–Te–Sn ternary glassy films. Chalcogenide Lett. 4, 61–64 (2007)Google Scholar
  31. Sharma, A., Mehta, N. Estimation of the density of defect states in glassy Se80−xTe20Snx alloys using ac conductivity measurements. Phys. Scr. 84, 1–5 (2011)CrossRefGoogle Scholar
  32. Sharma, A., Mehta, N.: Analysis of composition dependence of some thermal transport properties in glassy Se80–xTe20Snx (0 ≤ x ≤ 10) alloys using transient plane source measurements. Measurement 46, 514–520 (2013)CrossRefGoogle Scholar
  33. Sharma, V., Thakur, A., Sharma, J., Kumar, V., Gautam, S., Tripathi, S.K.: Electrical properties of a-Se85–xTe15Snx thin films. J. Non-Cryst. Solids 353, 1474–1477 (2007)ADSCrossRefGoogle Scholar
  34. Sharma, A., Mehta, N., Kumar, A.: Dependence of activation energy and pre-exponential factor on audio frequency in glassy Se80–xTe20Snx alloys. J. Alloys Compd. 509, 3468–3472 (2011)CrossRefGoogle Scholar
  35. Sharma, K., Lal, M., Goyal, N.: Optical properties of amorphous Se80-xTe20Bix thin films. J. Opto. Bio. Mat. 6, 27–34 (2014)Google Scholar
  36. Tauc, J.: The Optical Properties of Solids. North-Holland, Amsterdam (1970)Google Scholar
  37. Tauc, J.: Optical Properties of Amorphous Semiconductors, pp. 159–220. Plenum, New York (1974a)Google Scholar
  38. Tauc, J.: Amorphous and Liquid Semiconductors Edited by J. Tauc. Plenum, New York (1974b)CrossRefGoogle Scholar
  39. Thorpe, M.F.: Continuous deformations in random networks. J. Non-Cryst. Solids 57, 355–370 (1983)ADSCrossRefGoogle Scholar
  40. Thorpe, M.F.: Rigidity percolation in glassy structures. J. Non-Cryst. Solids 76, 109–116 (1985)ADSCrossRefGoogle Scholar
  41. Urbach, E.: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)ADSCrossRefGoogle Scholar
  42. Wood, D.J., Tauc, J.: Weak absorption tails in amorphous semiconductors. Phys. Rev. 5, 3144–3150 (1972)ADSCrossRefGoogle Scholar
  43. Zavetova, M., Velicky, B.: Optical Properties of Solids New Developments Edited by B. O. Seraphin, p. 379. North-Holland, Amsterdam (1976)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physical and Material SciencesMahatma Gandhi Central UniversityMotihariIndia
  2. 2.Glass Science Laboratory, Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations