Skip to main content
Log in

All-optical logic NOR gate using a single quantum-dot SOA-assisted an optical filter

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We thoroughly explore the characteristics of an ultrafast all-optical NOR gate for 160 Gb/s return-to-zero Gaussian data signals using a single quantum-dot semiconductor optical amplifier (QD-SOA) and an optical filter (OF). In this proposed scheme, we employ an optical clock signal as a probe in addition to data signals as pumps between which the Boolean NOR function is executed. By conducting numerical simulations, we investigate and evaluate the effects of various critical factors on the extinction ratio and Q2-factor. This enables us to specify the margins of clock wavelength, peak power of data and clock signals, current density, electron relaxation time from the excited state to the ground state, linewidth enhancement factor, small signal gain of QD-SOA, OF bandwidth and order, the permissible extent of arrival time difference between data signals and clock, and the effect of amplified spontaneous emission. Moreover, we demonstrate that the proposed device can be applied to a multiple-input NOR gate. The results show that the proposed NOR gate can be achieved with both logical correctness and high quality when the specified conditions are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agrawal, G.P.: Fiber Optic Communication Systems, 3rd edn. Wiley, New York (2002)

    Book  Google Scholar 

  • Akiyama, T., Ekawa, M., Sugawara, M., Kawaguchi, K., Sudo, H., Kuramata, A., Ebe, H., Arakawa, Y.: An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005)

    Article  ADS  Google Scholar 

  • Anzai, S., Komai, Y., Mieno, M., Wada, N., Yoda, T., Miyazaki, T., Kodate, K.: Terahertz optical clock generation with tunable repetition rate and central wavelength using variable-bandwidth spectrum shaper. Opt. Exp. 17(7), 4932–4937 (2009)

    Article  ADS  Google Scholar 

  • Batysta, F., Antipenkov, R., Green, J.T., Naylon, J.A., Novak, J., Mazanec, T., Hribek, P., Zervos, C., Bakule, P., Rus, B.: Pulse synchronization system for picosecond pulse-pumped OPCPA with femtosecond-level relative timing jitter. Opt. Exp. 22(24), 30281–30286 (2014)

    Article  ADS  Google Scholar 

  • Berrettini, G., Simi, A., Malacarne, A., Bogoni, A., Poti, L.: Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. IEEE Photon. Technol. Lett. 18(8), 917–919 (2006)

    Article  ADS  Google Scholar 

  • Bogoni, A., Poti, L., Ghelfi, P., Scaffardi, M., Porzi, C., Ponzini, F., Meloni, G., Berrettini, G., Malacarne, A., Prati, G.: OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 13(1), 1–12 (2007)

    Article  ADS  Google Scholar 

  • Bogoni, A., Poti, L., Proietti, R., Meloni, G., Ponzini, F., Ghelfi, P.: Regenerative and reconfigurable all-optical logic gates for ultra-fast applications. Electron. Lett. 41(7), 435–436 (2005)

    Article  Google Scholar 

  • Borri, P., Langbein, W., Schneider, S., Woggon, U., Sellin, R.L., Ouyang, D., Bimberg, D.: Exciton relaxation and dephasing in quantum-dot amplifiers from room to cryogenic temperature. IEEE J. Sel. Top. Quantum Electron. 8(5), 984–991 (2002)

    Article  Google Scholar 

  • Yu, C., Christen, L., Luo, T., Wang, Y., Pan, Z., Yan, L.S., Willner, A.E.: All-optical XOR gate using polarization rotation in single highly nonlinear fiber. IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005)

    Article  ADS  Google Scholar 

  • Chan, L.Y., Qureshi, K.K., Wai, P.K.A., Moses, B., Lui, L.H.K., Tam, H.Y., Demokan, M.S.: All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate. IEEE Photon. Technol. Lett. 15(4), 593–595 (2003)

    Article  ADS  Google Scholar 

  • Chattopadhyay, T., Gayen, D.K.: Reconfigurable all-optical delay flip flop using QD-SOA assisted Mach–Zehnder interferometer. J. Lightw. Technol. 32(23), 4571–4577 (2014)

    Article  Google Scholar 

  • Contestabile, G., Maruta, A., Sekiguchi, S., Morito, K., Sugawara, M., Kitayama, K.: Cross-gain modulation in quantum-dot SOA at 1550 nm. IEEE J. Quantum Electron. 46(12), 1696–1703 (2010)

    Article  ADS  Google Scholar 

  • Dimitriadou, E., Zoiros, K.E.: Proposal for all-optical NOR gate using single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Commun. 285(7), 1710–1716 (2012)

    Article  ADS  Google Scholar 

  • Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightw. Technol. 31(23), 3813–3821 (2013a)

    Article  ADS  Google Scholar 

  • Dimitriadou, E., Zoiros, K.E.: On the feasibility of 320 Gb/s all-optical AND gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Prog. Electromagn. Res. B 50, 113–140 (2013b)

    Article  Google Scholar 

  • Dong, J., Zhang, X., Xu, J., Huang, D.: 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: experimental demonstration and theoretical analysis. Opt. Commun. 281, 1710–1715 (2008)

    Article  ADS  Google Scholar 

  • Ezra, Y.B., Haridim, M., Lembrikov, B.I.: Theoretical analysis of gain-recovery time and chirp in QD-SOA. IEEE Photon. Technol. Lett. 17(9), 1803–1805 (2005a)

    Article  ADS  Google Scholar 

  • Ezra, Y.B., Lembrikov, B.I., Haridim, M.: Acceleration of gain recovery and dynamics of electrons in QD-SOA. IEEE J. Quantum Electron. 41(10), 1268–1273 (2005b)

    Article  ADS  Google Scholar 

  • Ezra, Y.B., Lembrikov, B.I., Haridim, M.: Specific feature of XGM in QD-SOA. IEEE J. Quantum Electron. 43(8), 730–737 (2007)

    Article  ADS  Google Scholar 

  • Ezra, Y.B., Lembrikov, B.I., Haridim, M.: Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 45(1), 34–41 (2009)

    Article  ADS  Google Scholar 

  • Gayen, D.K., Chattopadhyay, T.: Designing of optimized all-optical half adder circuit using single quantum-dot semiconductor optical amplifier assisted Mach–Zehnder interferometer. J. Lightw. Technol. 31(12), 2029–2035 (2013)

    Article  ADS  Google Scholar 

  • Hinton, K., Raskutti, G., Farrell, P.M., Tucker, R.S.: Switching energy and device size limits on digital photonic signal processing technologies. IEEE J. Sel. Top. Quantum Electron. 14(3), 938–945 (2008)

    Article  Google Scholar 

  • Jung, Y.J., Son, C.W., Jhon, Y.M., Lee, S., Park, N.: One-level simplification method for all-optical combinational logic circuit. IEEE Photon. Technol. Lett. 20(10), 800–802 (2008)

    Article  ADS  Google Scholar 

  • Komai, Y., Anzai, S., Wada, N., Moritsuka, F., Miyazaki, T., Kodate, K.: Repetition-rate-tunable terahertz optical clock generation based on optical spectrum synthesizer using attenuation and phase-tunable arrayed waveguide grating. Jpn. J. Appl. Phys. 46(8B), 5508–5511 (2007)

    Article  ADS  Google Scholar 

  • Kotb, A.: 1 Tb/s high quality factor NOR gate based on quantum-dot semiconductor optical amplifier. Opt. Quantum Electron 45(12), 1259–1268 (2013a)

    Article  Google Scholar 

  • Kotb, A.: NOR gate based on QD-SOA at 250 Gbit/s. Opt. Quantum Electron. 45(6), 473–480 (2013b)

    Article  Google Scholar 

  • Kotb, A.: Computational analysis of solitons all-optical logic NAND and XNOR gates using semiconductor optical amplifiers. Opt. Quantum Electron. 49, 281 (2017). https://doi.org/10.1007/s11082-017-1119-z

    Article  Google Scholar 

  • Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: Effect of amplified spontaneous emission on semiconductor optical amplifier based all-optical logic. Opt. Commun. 284(24), 5798–5803 (2011)

    Article  ADS  Google Scholar 

  • Lazzeri, E., Malacarne, A., Serafino, G., Bogoni, A.: Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide. IEEE Photon. Technol. Lett. 24(24), 2258–2261 (2012)

    Article  ADS  Google Scholar 

  • Lee, H., Yoon, H., Kim, Y., Jeong, J.: Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s. IEEE J. Quantum Electron. 35(8), 1213–1219 (1999)

    Article  ADS  Google Scholar 

  • Li, Z., Li, G.: Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett. 18(12), 1341–1343 (2006)

    Article  ADS  Google Scholar 

  • Littler, I.C.M., Rochette, M., Eggleton, B.J.: Adjustable bandwidth dispersionless bandpass FBG optical filter. Opt. Exp. 13(9), 3397–3407 (2005)

    Article  ADS  Google Scholar 

  • O’Driscoll, I., Piwonski, T., Schleussner, C.F., Houlihan, J., Huyet, G., Manning, R.J.: Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 91, 071,111–1–071,111–3 (2007)

    Google Scholar 

  • Paranthoen, C., Platz, C., Moreau, G., Bertru, N., Dehaese, O., Corre, A.L., Miska, P., Even, J., Folliot, H., Labbe, C., Patriarche, G., Simon, J.C., Loualiche, S.: Growth and optical characterizations of InAs quantum dots on InP substrate: towards a 1.55 μm quantum dot laser. J. Cryst. Growth 251, 230–235 (2003)

    Article  ADS  Google Scholar 

  • Prinz, S., Hafner, M., Schultze, M., Teisset, C.Y., Bessing, R., Michel, K., Kienberger, R., Metzger, T.: Active pump-seed-pulse synchronization for OPCPA with sub-2-fs residual timing jitter. Opt. Exp. 22(25), 31050–31056 (2014)

    Article  ADS  Google Scholar 

  • Qasaimeh, O.: Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 16(2), 542–544 (2004)

    Article  ADS  Google Scholar 

  • Qasaimeh, O.: Dynamics of optical pulse amplification and saturation in multiple state quantum dot semiconductor optical amplifiers. Opt. Quantum Electron. 41(2), 99–111 (2009)

    Article  Google Scholar 

  • Rostami, A., Nejad, H.B.A., Qartavol, R.M., Saghai, H.R.: Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46(3), 354–360 (2010)

    Article  ADS  Google Scholar 

  • Scaffardi, M., Andriolli, N., Meloni, G., Berrettini, G., Fresi, F., Castoldi, P., Poti, L., Bogoni, A.: Photonic combinatorial network for contention management in 160 Gb/s-interconnection networks based on all-optical 2 × 2 switching elements. IEEE J. Sel. Top. Quantum Electron. 13(5), 1531–1539 (2007)

    Article  Google Scholar 

  • Siarkos, T., Zoiros, K.E.: Performance of single semiconductor optical amplifier-based ultrafast nonlinear interferometer with clock-control signals timing deviation in dual rail-switching mode. Opt. Eng. 48(8), 085,004–1–085,004–9 (2009)

    Article  Google Scholar 

  • Singh, P., Tripathi, D.K., Jaiswal, S., Dixit, H.K.: All-optical logic gates: designs, classification, and comparison. Adv. Opt. Technol. (2014). https://doi.org/10.1155/2014/275083

    Google Scholar 

  • Sygletos, S., Bonk, R., Vallaitis, T., Marculescu, A., Vorreau, P., Jingshi, L., Brenot, R., Lelarge, F., Duan, G.H., Freude, W., Leuthold, J.: Filter assisted wavelength conversion with quantum-dot SOAs. J. Lightw. Technol. 28(6), 882–897 (2010)

    Article  ADS  Google Scholar 

  • Takada, K., Okamoto, K.: Optical low-coherence reflectometry using a gaussian bandpass filter for measuring WDM components. IEEE Photon. Technol. Lett. 11(8), 1021–1023 (1999)

    Article  ADS  Google Scholar 

  • Tilsch, M., Hulse, C.A., Zernik, F.K., Modavis, R.A., Addiego, C.J., Sargent, R.B., O’Brien, N.A., Pinkney, H., Turukhin, A.V.: Experimental demonstration of thin-film dispersion compensation for 50-GHz filters. IEEE Photon. Technol. Lett. 15(1), 66–68 (2003)

    Article  ADS  Google Scholar 

  • Uskov, A.V., Berg, T.W., Mork, J.: Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 40(3), 306–320 (2004)

    Article  ADS  Google Scholar 

  • Vazquez, J.M., Nilsson, H.H., Zhang, J.Z., Galbraith, I.: Linewidth enhancement factor of quantum-dot optical amplifiers. IEEE J. Quantum Electron. 42(10), 986–993 (2006)

    Article  ADS  Google Scholar 

  • Xu, J., Zhang, X., Mork, J.: Investigation of patterning effects in ultrafast SOA-based optical switches. IEEE J. Quantum Electron. 46(1), 87–94 (2010)

    Article  ADS  Google Scholar 

  • Zhang, Z.Y., Xu, B., Jin, P., Meng, X.Q., Li, C.M., Ye, X.L., Wang, Z.G.: Photoluminescence study of self-assembled InAs/GaAs quantum dots covered by an InAlAs and InGaAs combination layer. J. Appl. Phys. 92(1), 511–514 (2002)

    Article  ADS  Google Scholar 

  • Zilkie, A.J., Meier, J., Mojahedi, M., Helmy, A.S., Poole, P.J., Barrios, P., Poitras, D., Rotter, T.J., Yang, C., Stintz, A., Malloy, K.J., Smith, P.W.E., Aitchison, J.S.: Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 μm. J. Lightw. Technol. 26(11), 1498–1509 (2008)

    Article  ADS  Google Scholar 

  • Zoiros, K., Stathopoulos, T., Vlachos, K., Hatziefremidis, A., Houbavlis, T., Papakyriakopoulos, T., Avramopoulos, H.: Experimental and theoretical studies of a high repetition rate fiber laser, mode-locked by external optical modulation. Opt. Commun. 180(4–6), 301–315 (2000)

    Article  ADS  Google Scholar 

  • Zoiros, K.E., Botsiaris, C., Koukourlis, C.S., Houbavlis, T.: Necessary temporal condition for optimizing the switching window of the semiconductor-optical-amplifier-based ultrafast nonlinear interferometer in counter-propagating configuration. Opt. Eng. 45(11), 115,005–1–115,005–14 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 17K06443 and 16K18108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Komatsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, K., Hosoya, G. & Yashima, H. All-optical logic NOR gate using a single quantum-dot SOA-assisted an optical filter. Opt Quant Electron 50, 131 (2018). https://doi.org/10.1007/s11082-018-1384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1384-5

Keywords

Navigation