Analysis and optimisation of bidirectional optical couplers in PCBs

  • Jan Hinnerk Stosch
  • Thomas Kühler
  • Elmar Griese
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices


Integrated optical waveguides on board level gain more interest with growing bandwidth. Due to limited space on board level, a new approach is to use bidirectional optical transmission on one single waveguide, to save space. As manufacturing technique we used an ion exchange process, as this has proven to be highly scalable and can be easily integrated into current PCB manufacturing processes. We developed an optical coupler for application in bidirectional optical transmission paths on a single waveguide. Due to the highly multimodal character of the structure, we applied ray tracing techniques to analyse the optical properties. By such means efficiency calculations as well as a transient analysis were possible. We determined important parameters of the structure for optimisation of the coupling efficiency.


Optical coupler PCB Ray tracing Efficiency calculations Transient analysis Diffusion EOPCB 


  1. Bierhoff, T.: Strahlenoptische Analyse der Wellenausbreitung und Modenkopplung in Optisch Hoch Multimodalen Wellenleitern. Ph.D. Thesis, Universität Paderborn (2006)Google Scholar
  2. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1959)MATHGoogle Scholar
  3. Brusberg, L., Schröder, H., Pitwon, R., Whalley, S., Herbst, C., Miller, A., Neitz, M., Röder, J., Lang, K.D.: Optical backplane for board-to-board interconnection based on a glass panel gradient-index multimode waveguide technology. In: 2013 IEEE 63rd Electronic Components and Technology Conference, pp. 260–267 (2013).
  4. Brusberg, L., Schröder, H., Pitwon, R., Whalley, S., Miller, A., Herbst, C., Röder, J., Weber, D., Lang, K.D.: Electro-optical backplane demonstrator with gradient-index multimode glass waveguides for board-to-board interconnection. In: 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), pp. 1033–1041 (2014).
  5. Brusberg, L., Whalley, S., Pitwon, R.C.A., Faridi, F.R., Schröder, H.: Large optical backplane with embedded graded-index glass waveguides and fiber-flex termination. J. Lightwave Technol. 34(10), 2540–2551 (2016). ADSCrossRefGoogle Scholar
  6. Doany, F.E., Schow, C.L., Lee, B.G., Budd, R., Baks, C.W., Tsang, C.K., Knickerbocker, J.U., Dangel, R., Chan, B., Lin, H., et al.: Terabit/s-class optical pcb links incorporating 360-gb/s bidirectional 850 nm parallel optical transceivers. J. Lightwave Technol. 30(4), 560–571 (2012)ADSCrossRefGoogle Scholar
  7. Doremus, R.H.: Exchange and diffusion of ions in glass. J. Phys. Chem. 68(8), 2212–2218 (1964)CrossRefGoogle Scholar
  8. Griese, E.: A high-performance hybrid electrical-optical interconnection technology for high-speed electronic systems. IEEE Trans. Adv. Packag. 24(3), 375–383 (2001). CrossRefGoogle Scholar
  9. Hunter, J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)CrossRefGoogle Scholar
  10. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open Source Scientific Tools for Python. (2001). Accessed 10 Feb 2018
  11. Kühler, T., Griese, E.: Modeling the ion-exchange process to support the manufacturing of optical multimode graded-index waveguides in thin glass sheets. In: 2010 IEEE 14th Workshop on Signal Propagation on Interconnects (SPI), pp. 87–89 (2010).
  12. Kühler, T., Zhang, D., Griese, E.: Modeling the ion-exchange process for diffusion waveguides within thin glass sheets. In: 13th International Workshop on Finite Elements for Microwave Engineering (2016)Google Scholar
  13. Love, J.D., Snyder, A.W.: Ray analysis of multimode, optical fibres. Ann. Telecommun. 32(3), 109–114 (1977). Google Scholar
  14. Ramaswamy, R., Srivastava, R.: Ion-exchanged glass waveguides: a review. J. Lightwave Technol. 6(6), 984–1000 (1988). ADSCrossRefGoogle Scholar
  15. Roth, J., Kühler, T., Griese, E.: Utilizing multimode interference effects in integrated graded index optical waveguides for efficient power splitting. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. (2018)Google Scholar
  16. Roth, J.P., Kühler, T., Griese, E.: Low loss optical splitter based on MMI effects in thin glass sheets for PCB integration. In: 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), pp. 19–20 (2017).
  17. Schröder, H., Arndt-Staufenbiel, N., Beier, A., Ebling, F., Franke, M., Griese, E., Intemann, S., Kostelnik, J., Kühler, T., Modinger, R., Roda, I., Schlosser, I.: Thin glass based electrical-optical circuit boards (EOCB) using ion-exchange technology for graded-index multimode waveguides. In: Electronic Components and Technology Conference, 2008. ECTC 2008. 58th, pp. 268–275 (2008).
  18. Snyder, A.W., Love, J.: Optical Waveguide Theory. Springer, Berlin (2012)Google Scholar
  19. Sönmez, Y., Himmler, A., Griese, E., Mrozynski, G.: A ray tracing approach to model wave propagation in highly multimode graded index optical waveguides. Int. J. Appl. Electromagn. Mech. 17(1–3), 157–168 (2003)Google Scholar
  20. Stosch, J.H., Kühler, T., Griese, E.: Optical directional coupler for graded index waveguides in thin glass sheets for PCB integration. In: 2016 IEEE 20th Workshop on Signal and Power Integrity (SPI), pp. 1–4 (2016).
  21. Stosch, J.H., Kühler, T., Griese, E.: Analysis of optical directional couplers in thin glass sheets for pcb integration. In: 2017 IEEE 21st Workshop on Signal and Power Integrity (SPI), pp. 1–4 (2017a).
  22. Stosch, J.H., Kühler, T., Griese, E.: Optimisation of optical directional couplers for pcb integration. In: 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), pp. 45–46 (2017b).
  23. Sugita, T., Abae, T., Hirano, K., Itoh, Y.: Bidirectional optical coupler for plastic optical fibers. Appl. Opt. 44(15), 2933–2942 (2005)ADSCrossRefGoogle Scholar
  24. Tervonen, A., West, B.R., Honkanen, S.: Ion-exchanged glass waveguide technology: a review. Opt. Eng. 50(7), 071107 (2011)ADSCrossRefGoogle Scholar
  25. Walker, R.G., Wilkinson, C.D.W.: Integrated optical waveguiding structures made by silver ion-exchange in glass. 2: directional coupler and bends. Appl. Opt. 22(12), 1929–1936 (1983). ADSCrossRefGoogle Scholar
  26. Witkowski, J., Grobelny, A.: Ray tracing method in a 3d analysis of fiber-optic elements. Opt. Appl. 38(2), 281–294 (2008)Google Scholar
  27. Zhang, D., Kühler, T., Griese, E.: Inverse modeling of buried, ion-exchanged glass waveguides using adjoint method. In: 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), pp. 33–34 (2017).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theoretical Electrical Engineering and PhotonicsUniversity of SiegenSiegenGermany

Personalised recommendations