Skip to main content
Log in

Impact of initial pulse characteristics on the mitigation of self-phase modulation by sinusoidally time varying phase

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A simple and efficient approach to suppress undesirable self-phase modulation (SPM) of optical pulses propagating in fiber-optic systems is based on imposing a sinusoidal temporal phase modulation on the pulses to offset the chirp generated by SPM (Audo et al. Opt Lett 42(15):2902–2905, 2017). Here, we present a detailed analysis of this method. We derive an exact formula for the reduction of the SPM-induced rms spectrum broadening of an initially Gaussian pulse enabled by the sinusoidal compensation, and we assess the effects of the initial pulse shape and duration on the effectiveness of the technique by means of numerical simulation. The differences between pre- and post-propagation compensation schemes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, San Francisco (2006)

    MATH  Google Scholar 

  • Anderson, D., Desaix, M., Lisak, M., Quiroga-Teixeiro, M.L.: Wave-breaking in nonlinear optical fibers. J. Opt. Soc. Am. B 9(8), 1358–1361 (1992)

    Article  ADS  Google Scholar 

  • Audo, F., Finot, C.: Extinction ratio enhancement by sinusoidal phase modulation and nonlinear spectral focusing. Laser Phys. 27, 115401 (2017)

    Article  ADS  Google Scholar 

  • Audo, F., Boscolo, S., Fatome, J., Kibler, B., Finot, C.: Nonlinear spectrum broadening cancellation by sinusoidal phase modulation. Opt. Lett. 42(15), 2902–2905 (2017)

    Article  ADS  Google Scholar 

  • Blanco-Redondo, A., Martijn De Sterke, C., Sipe, J.E., Krauss, T.F., Eggleton, B.J.: Husko: pure-quartic solitons. Nature Communications 7, 10427 (2016)

    Article  ADS  Google Scholar 

  • Boscolo, S., Chaussard, F., Andresen, E.R., Rigneault, H., Finot, C.: Impact of initial pulse shape on the nonlinear spectral compression in optical fibre. Opt. Laser Technol. 99, 301–309 (2017a)

    Article  ADS  Google Scholar 

  • Boscolo, S., Fatome, J., Finot, C.: Impact of amplitude jitter and signal-to-noise ratio on the nonlinear spectral compression in optical fibres. Opt. Commun. 389, 197–202 (2017b)

    Article  ADS  Google Scholar 

  • Boscolo, S., Latkin, A.I., Turitsyn, S.K.: Passive nonlinear pulse shaping in normally dispersive fiber systems. IEEE J. Quantum Electron. 44(12), 1196–1203 (2008)

    Article  ADS  Google Scholar 

  • Boscolo, S., Mouradian, L.K., Finot, C.: Enhanced nonlinear spectral compression in fibre by external sinusoidal phase modulation. J. Opt. 18(10), 105504 (2016)

    Article  ADS  Google Scholar 

  • Boscolo, S., Turitsyn, S.K., Finot, C.: Amplifier similariton fiber laser with nonlinear spectral compression. Opt. Lett. 37(21), 4531–4533 (2012). https://doi.org/10.1364/ol.37.004531

    Article  ADS  Google Scholar 

  • Burgoyne, B., Godbout, N., Lacroix, S.: Nonlinear pulse propagation in optical fibers using second order moments. Opt. Express 15(16), 10075–10090 (2007)

    Article  ADS  Google Scholar 

  • Castelló-Lurbe, D., Andrés, P., Silvestre, E.: Dispersion-to-spectrum mapping in nonlinear fibers based on optical wave-breaking. Opt. Express 21(23), 28550–28558 (2013). https://doi.org/10.1364/oe.21.028550

    Article  ADS  Google Scholar 

  • DeCarlo, L.T.: On the meaning and use of kurtosis. Psychol. Methods 2(3), 292–307 (1997)

    Article  MathSciNet  Google Scholar 

  • Finot, C., Boscolo, S.: Design rules for nonlinear spectral compression in optical fibers. J. Opt. Soc. Am. B 33(4), 760–767 (2016)

    Article  ADS  Google Scholar 

  • Finot, C., Dudley, J.M., Kibler, B., Richardson, D.J., Millot, G.: Optical parabolic pulse generation and applications. IEEE J. Quantum Electron. 45(11), 1482–1489 (2009)

    Article  ADS  Google Scholar 

  • Finot, C., Provost, L., Petropoulos, P., Richardson, D.J.: Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. Opt. Express 15(3), 852–864 (2007)

    Article  ADS  Google Scholar 

  • Godil, A.A., Auld, B.A., Bloom, D.M.: Picosecond time-lenses. IEEE J. Quantum Electron. 30(3), 827–837 (1994). https://doi.org/10.1109/3.286176

    Article  ADS  Google Scholar 

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23(4), 171–172 (1973)

    Article  ADS  Google Scholar 

  • Ilday, F.Ö., Wise, F.W.: Nonlinearity management: a route to high-energy soliton fiber lasers. J. Opt. Soc. Am. B 19(3), 470–476 (2002)

    Article  ADS  Google Scholar 

  • Ma, X., Zhu, C., Hu, I.N., Kaplan, A., Galvanauskas, A.: Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores. Opt. Express 22(8), 9206–9219 (2014). https://doi.org/10.1364/oe.22.009206

    Article  ADS  Google Scholar 

  • Markaryan, N.L., Muradyan, L.K., Papazyan, T.A.: Spectral compression of ultrashort laser pulses. Kvantovaya Elektron. 18(7), 865–867 (1991)

    Google Scholar 

  • Michieletto, M., Lyngsø, J.K., Jakobsen, C., Lægsgaard, J., Bang, O., Alkeskjold, T.T.: Hollow-core fibers for high power pulse delivery. Opt. Express 24(7), 7103–7119 (2016). https://doi.org/10.1364/oe.24.007103

    Article  ADS  Google Scholar 

  • Mouradian, L.K., Louradour, F., Messager, V., Barthélémy, A., Froehly, C.: Spectro-temporal imaging of femtosecond events. IEEE J. Quantum Electron. 36(7), 795–801 (2000)

    Article  ADS  Google Scholar 

  • Munroe, M.J., Hamamoto, M.Y., Dutton, D.A.: Reduction of SPM induced spectral broadening in a high peak power narrow linewidth IR fiber laser using phase modulation. In: 2009, pp. 71952N-71952N-71956

  • Oberthaler, M., Höpfel, R.A.: Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers. Appl. Phys. Lett. 63(8), 1017–1019 (1993)

    Article  ADS  Google Scholar 

  • Ouzounov, D.G., Ahmad, F.R., Müller, D., Venkataraman, N., Gallagher, M.T., Thomas, M.G., Silcox, J., Koch, K.W., Gaeta, A.L.: Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003)

    Article  ADS  Google Scholar 

  • Paré, C., Villeneuve, A., LaRochelle, S.: Split compensation of dispersion and self-phase modulation in optical communication systems. Opt. Commun. 160(1), 130–138 (1999)

    Article  ADS  Google Scholar 

  • Parriaux, A., Conforti, M., Bendahmane, A., Fatome, J., Finot, C., Trillo, S., Picqué, N., Millot, G.: Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers. Opt. Lett. 42(15), 3044–3047 (2017). https://doi.org/10.1364/ol.42.003044

    Article  ADS  Google Scholar 

  • Phan Huy, M.C., Baron, A., Lebrun, S., Frey, R., Delaye, P.: Characterization of self-phase modulation in liquid filled hollow core photonic bandgap fibers. J. Opt. Soc. Am. B 27(9), 1886–1893 (2010). https://doi.org/10.1364/josab.27.001886

    Article  ADS  Google Scholar 

  • Pierrot, S., Salin, F.: Amplification and compression of temporally shaped picosecond pulses in Yb-doped rod-type fibers. Opt. Express 21(17), 20484–20496 (2013)

    Article  ADS  Google Scholar 

  • Pinault, S.C., Potasek, M.J.: Frequency broadening by self-phase modulation in optical fibers. J. Opt. Soc. Am. B 2(8), 1318–1319 (1985)

    Article  ADS  Google Scholar 

  • Planas, S.A., Pires Mansur, N.L., Brito Cruz, C.H., Fragnito, H.L.: Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Opt. Lett. 18(9), 699–701 (1993)

    Article  ADS  Google Scholar 

  • Plansinis, B.W., Donaldson, W.R., Agrawal, G.P.: Spectral changes induced by a phase modulator acting as a time lens. J. Opt. Soc. Am. B 32(8), 1550–1554 (2015). https://doi.org/10.1364/josab.32.001550

    Article  ADS  Google Scholar 

  • Richardson, D.J., Nilsson, J., Clarkson, W.A.: High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27(11), B63–B92 (2010)

    Article  Google Scholar 

  • Rosenberg, C.-K., Anderson, D., Desaix, M., Johannisson, P., Lisak, M.: Evolution of optical pulses towards wave breaking in highly nonlinear fibres. Opt. Commun. 273, 272–277 (2007)

    Article  ADS  Google Scholar 

  • Seghilani, M., Maram, R., Azaña, J.: Mitigating nonlinear propagation impairments of ultrashort pulses by fractional temporal self-imaging. Opt. Lett. 42(4), 879–882 (2017). https://doi.org/10.1364/ol.42.000879

    Article  ADS  Google Scholar 

  • Shah, L., Liu, Z., Hartl, I., Imeshev, G., Cho, G.C., Fermann, M.E.: High energy femtosecond Yb cubicon fiber amplifier. Opt. Express 13(12), 4717–4722 (2005)

    Article  ADS  Google Scholar 

  • Stolen, R.H., Lin, C.: Self-phase modulation in silica optical fibers. Phys. Rev. A 17(4), 1448–1453 (1978)

    Article  ADS  Google Scholar 

  • Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)

    Article  ADS  Google Scholar 

  • Su, R., Zhou, P., Ma, P., Lü, H., Xu, X.: High-peak-power, single-frequency, single-mode, linearly polarized, nanosecond all-fiber laser based on self-phase modulation compensation. Appl. Opt. 52(30), 7331–7335 (2013). https://doi.org/10.1364/ao.52.007331

    Article  ADS  Google Scholar 

  • Ulmer, T., Roth, J.M., Minch, J.R., Chang, J., Moores, J.D., Nowak, G., Walther, F.G.: Mitigation of self-phase modulation in high-peak-power lasercom systems. In: Lasers Congress 2016 (ASSL, LSC, LAC), Boston, Massachusetts, 2016/10/30 2016. OSA Technical Digest (online), p. LW3B.6. Optical Society of America

  • van Howe, J., Zhu, G., Xu, C.: Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems. Opt. Lett. 31(11), 1756–1758 (2006). https://doi.org/10.1364/ol.31.001756

    Article  ADS  Google Scholar 

  • Wang, Q.Z., Liu, Q.D., Liu, D., Ho, P.P., Alfano, R.R.: High-resolution spectra of self-phase modulation in optical fibers. J. Opt. Soc. Am. B 11(6), 1084–1089 (1994). https://doi.org/10.1364/josab.11.001084

    Article  ADS  Google Scholar 

  • Xu, C., Mollenauer, L., Liu, X.: Compensation of nonlinear self-phase modulation with phase modulators. Electron. Lett. 38(24), 1578–1579 (2002). https://doi.org/10.1049/el:20021050

    Article  Google Scholar 

  • Zeytunyan, A., Yesayan, G., Mouradian, L., Kockaert, P., Emplit, P., Louradour, F., Barthélémy, A.: Nonlinear-dispersive similariton of passive fiber. J. Eur. Opt. Soc. Rapid Pub. 4, 09009 (2009)

    Article  Google Scholar 

  • Zhou, S., Kuznetsova, L., Chong, A., Wise, F.W.: Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers. Opt. Express 13(13), 4869–4877 (2005)

    Article  ADS  Google Scholar 

  • Zhu, G., Edinberg, J., Xu, C.: Nonlinear distortion free fiber-based chirped pulse amplification with self-phase modulation up to 2π. Opt. Express 15(5), 2530–2534 (2007). https://doi.org/10.1364/oe.15.002530

    Article  ADS  Google Scholar 

  • Zohrabian, A.V., Mouradian, L.K.: Compression of the spectrum of picosecond ultrashort pulses. Quantum Electron. 25(11), 1076 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Bertrand Kibler and Julien Fatome for very stimulating discussions about the initial concept. We also thank Todd Ulmer for bringing to our knowledge several important previous publications on the method being studied. We acknowledge financial support by the Région Bourgogne (Pari Photcom) and the Agence Nationale de la Recherche (Labex Action ANR-11-LABX-01-01). This work was also supported by the European Union within the framework of the operational Program FEDER-FSE Bourgogne 2014–2020 and by the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Finot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscolo, S., Audo, F. & Finot, C. Impact of initial pulse characteristics on the mitigation of self-phase modulation by sinusoidally time varying phase. Opt Quant Electron 50, 62 (2018). https://doi.org/10.1007/s11082-018-1319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1319-1

Keywords

Navigation