Skip to main content
Log in

Terahertz data combined with principal component analysis applied for visual classification of materials

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A principal component analysis (PCA) method was used here to analyze three materials: glucose, intralipids, and water. The time-domain signal, frequency-domain information, refractive index, extinction coefficient, and dielectric function of these three substances were selected as original variables. We find that it is possible to analyze the similarity between different materials via the cluster distance in the principal component (PC) space and to analyze the difference between samples of the same material via the centroid distance, and the clustering effects of different original variables in PCA may be analyzed via the ratio of centroid distances. Because the thickness of solid-state matters and the concentration of liquid matters are related to the PC, the terahertz time-domain spectroscopy may be combined with PCA to perform visual classification on the materials, thus facilitating substance identification. Sample thickness and concentration may be deduced from the PC score of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Assadi, H., Karshafian, R., Douplik, A.: Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles. Int. J. Photoenergy 2014(1), 1–9 (2014)

    Article  Google Scholar 

  • Azoulay, A., Garzon, P., Eisenberg, M.J.: Comparison of the mineral content of tap water and bottled waters. J. Gen. Intern. Med. 16(3), 168–175 (2001)

    Article  Google Scholar 

  • Brun, M.A., Formanek, F., Yasuda, A., Sekine, M., Ando, N., Eishii, Y.: Terahertz imaging applied to cancer diagnosis. Phys. Med. Biol. 55, 4615–4623 (2010)

    Article  Google Scholar 

  • Chanussot, J., Nyström, I., Sladoje, N.: Shape signatures of fuzzy star-shaped sets based on distance from the centroid. Pattern Recogn. Lett. 26, 735–746 (2005)

    Article  Google Scholar 

  • Christopher, M.B.: Pattern Recognition and Machine Learning, pp. 561–565. Springer, Singapore (2006)

    MATH  Google Scholar 

  • Fan, S., Parrott, E.P.J., Ung, B.S.Y., Pickwell-MacPherson, E.: Calibration method to improve the accuracy of THz imaging and spectroscopy in reflection geometry. Photonics Res. 4(3), A29–A35 (2016)

    Article  Google Scholar 

  • Fawell, J.: Chemicals in the water environment. Where do the real and future threats lie? Ann. Ist. Super. Sanita 48(4), 347–353 (2012)

    Article  Google Scholar 

  • Formanek, F., Brun, M.-A., Yasuda, A.: Contrast improvement of terahertz images of thin histopathologic sections. Biomed. Opt. Express 2(1), 58–64 (2011)

    Article  Google Scholar 

  • Jolliffe, I.T.: Principal Component Analysis, p. P1. Springer, New York (2002a)

    MATH  Google Scholar 

  • Jolliffe, I.T.: Principal Component Analysis, 2nd edn, pp. 150–158. Springer, New York (2002b)

    MATH  Google Scholar 

  • Kniffin, G.P., Zurk, L.M.: Model-based material parameter estimation for terahertz reflection spectroscopy. IEEE Trans. Terahertz Sci. Technol. 2(2), 231–241 (2012)

    Article  ADS  Google Scholar 

  • Li, J.-S., Li, X.-J.: Determination principal component content of seed oils by THz-TDS. Chem. Phys. Lett. 476, 92–96 (2009)

    Article  ADS  Google Scholar 

  • Liu, H.-B., Zhang, X.-C.: Dehydration kinetics of d-glucose monohydrate studied using THz time-domain spectroscopy. Chem. Phys. Lett. 429, 229–233 (2006)

    Article  ADS  Google Scholar 

  • Löffler, T., Siebert, K., Czasch, S., Bauer, T., Roskos, H.G.: Visualization and classification in biomedical terahertz pulsed imaging. Phys. Med. Biol. 47, 3847–3852 (2002)

    Article  Google Scholar 

  • Milchev, A., Kruijt, W.S., Sluyters-Rehbach, M., Sluyters, J.H.: Probabilistic analysis of the distance between clusters randomly distributed on the electrode surface. J. Electroanal. Chem. 350(s1–2), 89–95 (1993)

    Article  Google Scholar 

  • Nakajima, S., Hoshina, H., Yamashita, M., Otani, C.: Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Appl. Phys. Lett. 90, 041102-1–041102-3 (2007)

    Article  ADS  Google Scholar 

  • Pollick, H.F.: Water fluoridation and the environment: current perspective in the United States. Int. J. Occup. Environ. Health 10(3), 343–350 (2004)

    Article  Google Scholar 

  • Reid, C.B., Fitzgerald, A., Reese, G., Goldin, R., Tekkis, P., O’Kelly, P.S., Pickwell-MacPherson, E., Gibson, A.P., Wallace, V.P.: Terahertz pulsed imaging of freshly excised human colonic tissues. Phys. Med. Biol. 56, 4333–4353 (2011)

    Article  Google Scholar 

  • Scheller, M.: Data extraction from terahertz time domain spectroscopy measurements. J. Infrared Millim. Terahertz Waves 35(8), 638–648 (2014)

    Article  Google Scholar 

  • Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R., Kemp, M.C.: Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86(24), 241116-1–241116-6 (2005)

    Article  ADS  Google Scholar 

  • Sun, P., Zou, Y.: Complex dielectric properties of anhydrous polycrystalline glucose in the terahertz region. Opt. Quant. Electron. 48(27), 1–10 (2016)

    Google Scholar 

  • Turton, D.A., Senn, H.M., Harwood, T., Lapthorn, A.J., Ellis, E.M., Wynne, K.: Terahertz underdamped vibrational motion governs rotein-ligand binding in solution. Nat. Commun. 5, 3999-1–3999-6 (2014)

    Article  ADS  Google Scholar 

  • Walther, M., Plochocka, P., Fischer, B., Helm, H., Jepsen, P.U.: Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. Biopolymers 67, 310–313 (2002)

    Article  Google Scholar 

  • Yada, H., Nagai, M., Tanaka, K.: Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 464, 166–170 (2008)

    Article  ADS  Google Scholar 

  • Yamauchi, S., Hatakeyam, S., Imai, Y., Tonouchi, M.: Terahertz time-domain spectroscopy to identify and evaluate anomer in lactose. Am. J. Anal. Chem. 4, 756–762 (2013)

    Article  Google Scholar 

  • Zheng, Z.-P., Fan, W.-H., Liang, Y.-Q., Yan, H.: Application of terahertz spectroscopy and molecular modeling in isomers investigation: glucose and fructose. Opt. Commun. 285, 1868–1871 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This study supported by the National Natural Science Foundation of China (No. 61371055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Sun, P. Terahertz data combined with principal component analysis applied for visual classification of materials. Opt Quant Electron 50, 46 (2018). https://doi.org/10.1007/s11082-018-1316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1316-4

Keywords

Navigation