A new approach to modelling Kelvin probe force microscopy of hetero-structures in the dark and under illumination

Abstract

A numerical method is proposed to model Kelvin probe force microscopy of hetero-structures in the dark and under illumination. It is applied to FTO/TiO2 and FTO/TiO2/MAPbI3 structures. The presence of surface states on the top of the TiO2 layers are revealed by combining theoretical computation and experimental results. Basic features of Kelvin probe force microscopy under illumination, namely surface photovoltage, are simulated as well. The method paves the way toward further investigations of more complicated optoelectronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aharon, S., Gamliel, S., Cohen, B.E., Etgar, L.: Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16, 10512–10518 (2014). https://doi.org/10.1039/c4cp00460d

    Article  Google Scholar 

  2. Ball, J.M., Stranks, S.D., Hörantner, M.T., Hüttner, S., Zhang, W., Crossland, E.J.W., Ramirez, I., Riede, M., Johnston, M.B., Friend, R.H., Snaith, H.J.: Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015). https://doi.org/10.1039/C4EE03224A

    Article  Google Scholar 

  3. Barnea-Nehoshtan, L., Kirmayer, S., Edri, E., Hodes, G., Cahen, D.: Surface photovoltage spectroscopy study of organo-lead perovskite solar cells. J. Phys. Chem. Lett. 5, 2408–2413 (2014). https://doi.org/10.1021/jz501163r

    Article  Google Scholar 

  4. Bergmann, V.W., Guo, Y., Tanaka, H., Hermes, I.M., Li, D., Klasen, A., Bretschneider, S.A., Nakamura, E., Berger, R., Weber, S.A.L.: Local time-dependent charging in a perovskite solar cell. ACS Appl. Mater. Interfaces. 8, 19402–19409 (2016). https://doi.org/10.1021/acsami.6b04104

    Article  Google Scholar 

  5. Brattain, W.H., Bardeen, J.: Surface properties of germanium. Bell Syst. Tech. J. 32, 1–41 (1953). https://doi.org/10.1002/j.1538-7305.1953.tb01420.x

    Article  Google Scholar 

  6. Challinger, S.E., Baikie, I.D., Harwell, J.R., Turnbull, G.A., Samuel, I.D.W.: An investigation of the energy levels within a common perovskite solar cell device and a comparison of DC/AC surface photovoltage spectroscopy Kelvin probe measurements of different MAPBI3 perovskite solar cell device structures. MRS Adv (2017). https://doi.org/10.1557/adv.2017.72

    Google Scholar 

  7. Chen, Y.-J., Zhang, M.-J., Yuan, S., Qiu, Y., Wang, X.-B., Jiang, X., Gao, Z., Lin, Y., Pan, F.: Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy. Nano Energy 36, 303–312 (2017). https://doi.org/10.1016/j.nanoen.2017.04.045

    Article  Google Scholar 

  8. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., Mosca, R.: MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613–4618 (2013). https://doi.org/10.1021/cm402919x

    Article  Google Scholar 

  9. Dymshits, A., Henning, A., Segev, G., Rosenwaks, Y., Etgar, L.: The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 5, 8704 (2015). https://doi.org/10.1038/srep08704

    ADS  Article  Google Scholar 

  10. Forro, L., Chauvet, O., Emin, D., Zuppiroli, L., Berger, H., Lévy, F.: High mobility n-type charge carriers in large single crystals of anatase (TiO2). J. Appl. Phys. 75, 633–635 (1994). https://doi.org/10.1063/1.355801

    ADS  Article  Google Scholar 

  11. Garrett, J.L., Tennyson, E.M., Hu, M., Huang, J., Munday, J.N., Leite, M.S.: Real-time nanoscale open-circuit voltage dynamics of perovskite solar cells. Nano Lett. (2017). https://doi.org/10.1021/acs.nanolett.7b00289

    Google Scholar 

  12. Gheno, A., Thu Pham, T.T., Di Bin, C., Bouclé, J., Ratier, B., Vedraine, S.: Printable WO3 electron transporting layer for perovskite solar cells: influence on device performance and stability. Sol. Energy Mater. Sol. Cells 161, 347–354 (2017). https://doi.org/10.1016/j.solmat.2016.10.002

    Article  Google Scholar 

  13. González, Y., Abelenda, A., Sánchez, M.: Surface photovoltage spectroscopy characterization of AlGaAs/GaAs laser structures. J. Phys: Conf. Ser. 792, 012021 (2017). https://doi.org/10.1088/1742-6596/792/1/012021

    Google Scholar 

  14. Harwell, J.R., Baikie, T.K., Baikie, I.D., Payne, J.L., Ni, C., Irvine, J.T.S., Turnbull, G.A., Samuel, I.D.W.: Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy. Phys. Chem. Chem. Phys. 18, 19738–19745 (2016). https://doi.org/10.1039/C6CP02446G

    Article  Google Scholar 

  15. Huang, Y., Aharon, S., Rolland, A., Pedesseau, L., Durand, O., Etgar, L., Even, J.: Influence of Schottky contact on the C–V and J–V characteristics of HTM-free perovskite solar cells. EPJ Photovolt. 8, 85501 (2017). https://doi.org/10.1051/epjpv/2017001

    ADS  Article  Google Scholar 

  16. Jiang, C.-S., Yang, M., Zhou, Y., To, B., Nanayakkara, S.U., Luther, J.M., Zhou, W., Berry, J.J., van de Lagemaat, J., Padture, N.P., Zhu, K., Al-Jassim, M.M.: Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015). https://doi.org/10.1038/ncomms9397

    Article  Google Scholar 

  17. Kitaura, M., Azuma, J., Ishizaki, M., Kamada, K., Kurosawa, S., Watanabe, S., Ohnishi, A., Hara, K.: Energy location of Ce3+ 4f level and majority carrier type in Gd3Al2Ga3O12: Ce crystals studied by surface photovoltage spectroscopy. Appl. Phys. Lett. 110, 251101 (2017). https://doi.org/10.1063/1.4987141

    ADS  Article  Google Scholar 

  18. Kronik, L.: Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1–206 (1999). https://doi.org/10.1016/S0167-5729(99)00002-3

    ADS  Article  Google Scholar 

  19. Kronik, L., Shapira, Y.: Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering. Surf. Interface Anal. 31, 954–965 (2001). https://doi.org/10.1002/sia.1132

    Article  Google Scholar 

  20. Levine, I., Gupta, S., Brenner, T.M., Azulay, D., Millo, O., Hodes, G., Cahen, D., Balberg, I.: Mobility-lifetime products in MAPbI3 films. J. Phys. Chem. Lett. 7, 5219–5226 (2016). https://doi.org/10.1021/acs.jpclett.6b02287

    Article  Google Scholar 

  21. Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2014). https://doi.org/10.1038/nphoton.2014.284

    ADS  Article  Google Scholar 

  22. Minj, A., Skuridina, D., Cavalcoli, D., Cros, A., Vogt, P., Kneissl, M., Giesen, C., Heuken, M.: Surface properties of AlInGaN/GaN heterostructure. Mater. Sci. Semicond. Process. 55, 26–31 (2016). https://doi.org/10.1016/j.mssp.2016.04.005

    Article  Google Scholar 

  23. Miyagi, T., Ogawa, T., Kamei, M., Wada, Y., Mitsuhashi, T., Yamazaki, A., Ohta, E., Sato, T.: Deep level transient spectroscopy analysis of an anatase epitaxial film grown by metal organic chemical vapor deposition. Jpn. J. Appl. Phys. 40, L404–L406 (2001). https://doi.org/10.1143/JJAP.40.L404

    ADS  Article  Google Scholar 

  24. Ono, L.K., Qi, Y.: Surface and interface aspects of organometal halide perovskite materials and solar cells. J. Phys. Chem. Lett. 7, 4764–4794 (2016). https://doi.org/10.1021/acs.jpclett.6b01951

    Article  Google Scholar 

  25. Palermo, V., Palma, M., Tomović, Ž., Watson, M.D., Friedlein, R., Müllen, K., Samorì, P.: Influence of molecular order on the local work function of nanographene architectures: a Kelvin-probe force microscopy study. ChemPhysChem 6, 2371–2375 (2005). https://doi.org/10.1002/cphc.200500181

    Article  Google Scholar 

  26. Rosenwaks, P.Y., Saraf, S., Tal, O., Schwarzman, A., Glatzel, D.T., Lux-Steiner, P.D.M.C.: Kelvin probe force microscopy of semiconductors. In: Kalinin, S., Gruverman, A. (eds.) Scanning Probe Microscopy, pp. 663–689. Springer, New York (2007)

    Google Scholar 

  27. Rühle, S., Cahen, D.: Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance. J. Phys. Chem. B 108, 17946–17951 (2004). https://doi.org/10.1021/jp047686s

    Article  Google Scholar 

  28. Sadewasser, S., Glatzel, T.: Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces. Springer Series in Surface Sciences, 2012 edition. Springer (2011)

  29. Silvaco Inc.: ATLAS user’s manual (2012). http://silvaco.com

  30. Singh, S.D., Porwal, S., Sinha, A.K., Ganguli, T.: Surface photovoltage spectroscopy of an epitaxial ZnO/GaP heterojunction. Semicond. Sci. Technol. 32, 055005 (2017). https://doi.org/10.1088/1361-6641/aa6424

    ADS  Article  Google Scholar 

  31. Snaith, H.J., Grätzel, M.: The role of a “Schottky Barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells. Adv. Mater. 18, 1910–1914 (2006). https://doi.org/10.1002/adma.200502256

    Article  Google Scholar 

  32. Tang, H., Prasad, K., Sanjinès, R., Schmid, P.E., Lévy, F.: Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042–2047 (1994). https://doi.org/10.1063/1.356306

    ADS  Article  Google Scholar 

  33. Tsai, H., Nie, W., Lin, Y.-H., Blancon, J.C., Tretiak, S., Even, J., Gupta, G., Ajayan, P.M., Mohite, A.D.: Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells. Adv. Energy Mater. 7, 1602159 (2017). https://doi.org/10.1002/aenm.201602159

    Article  Google Scholar 

  34. Yang, Y., Yan, Y., Yang, M., Choi, S., Zhu, K., Luther, J.M., Beard, M.C.: Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2015). https://doi.org/10.1038/ncomms8961

    ADS  Article  Google Scholar 

  35. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). https://doi.org/10.1126/science.1254050

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The work at FOTON was supported by French ANR SupersansPlomb project. Y.H.’s work at Xlim and IPVF was supported by HPERO GDR (CNRS).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yong Huang or Jacky Even.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 17.

Guest edited by Matthias Auf der Maur, Weida Hu, Slawomir Sujecki, Yuh-Renn Wu, Niels Gregersen, Paolo Bardella.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Gheno, A., Rolland, A. et al. A new approach to modelling Kelvin probe force microscopy of hetero-structures in the dark and under illumination. Opt Quant Electron 50, 41 (2018). https://doi.org/10.1007/s11082-017-1305-z

Download citation

Keywords

  • KPFM
  • Drift–diffusion
  • Hetero-structures
  • SPV
  • Halide perovskite