Influence of nonlinear effects on the characteristics of pulsed high-power broad-area distributed Bragg reflector lasers

Abstract

We theoretically analyze the influence of nonlinear effects such as spatial holeburning, two-photon absorption and gain compression on the power–current and beam characteristics of a high-power broad-area distributed Bragg reflector laser with a stripe width of 50 \(\upmu\)m operated in pulsed mode and compare them with simulations of a similar Fabry–Pérot laser. On the one hand, spatial holeburning leads to a higher mean intensity within the cavity for a Fabry–Pérot laser and resulting higher losses in combination with two-photon absorption and gain compression, on the other hand, excitation of higher order lateral modes leads to losses through the Bragg grating. In combination with spatio-temporal power variations resolved by the utilized time-dependent traveling wave model two-photon absorption leads to higher power losses compared to those models using averaged powers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adachihara, H., Hess, O., Abraham, E.: Spatiotemporal chaos in broad-area semiconductor lasers. J. Opt. Soc. Am. B 10(4), 658–665 (1993)

    ADS  Article  Google Scholar 

  2. Avrutin, E.A., Ryvkin, B.S.: Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers. Semicond. Sci. Technol. 32, 1–11 (2016)

    Google Scholar 

  3. BALaser: a software tool for simulation of dynamics in broad area semiconductor lasers. http://www.wias-berlin.de/software/balaser/

  4. Champagne, Y., McCarthy, N.: Influence of the axially varying quasi-Fermi-level separation of the active region on spatial hole burning in distributed-feedback semiconductor lasers. J. Appl. Phys. 72(6), 2110 (1992)

    ADS  Article  Google Scholar 

  5. Coldren, L.A., Corzine, S., Masanovic, M.L.: Diode Lasers and Photonic Integrated Circuits, 2nd edn. Wiley, New York (2012)

    Google Scholar 

  6. Dogan, M., Michael, C.P., Zheng, Y., Zhu, L., Jacob, J.H.: Two photon absorption in high power broad area laser diodes. In: Proceedings of SPIE—High-Power Diode Laser Technology and Applications XII, vol. 8965 (2014)

  7. Fischer, I., Hess, O., Elsäßer, W., Göbel, E.: Complex spatio-temporal dynamics in the near-field of a broad-area semiconductor laser. Europhys. Lett. 35(8), 579–584 (1996)

    ADS  Article  Google Scholar 

  8. Gehrig, E., Hess, O.: Dynamics of high-power diode lasers. In: Diehl, R. (ed.) High-Power Diode Lasers, pp. 55–81. Springer, Berlin (2000)

    Google Scholar 

  9. Joyce, W.B.: Current-crowded carrier confinement in double-heterostructure lasers. J. Appl. Phys. 51(53), 2394–7235 (1980)

    ADS  Article  Google Scholar 

  10. Joyce, W.B., Dixon, R.W.: Analytic approximations for the Fermi energy of an ideal Fermi gas. Appl. Phys. Lett. 31(5), 354–356 (1977)

    ADS  Article  Google Scholar 

  11. Knigge, A., Klehr, A., Wenzel, H., Zeghuzi, A., Fricke, J., Maaßdorf, A., Liero, A., Tränkle, G.: Wavelength-stabilized high-pulse-power laser diodes for automotive LiDAR. Phys. Status Solidi A, 1700439 (2018)

    Article  Google Scholar 

  12. Ning, C.Z., Indik, R.A., Moloney, J.V.: Effective Bloch equations for semiconductor lasers and amplifiers. IEEE J. Quantum Electron. 33(9), 1543–1550 (1997)

    ADS  Article  Google Scholar 

  13. Perez-Serrano, A., Javaloyes, J., Balle, S.: Spectral delay algebraic equation approach to broad area laser diodes. IEEE J. Sel. Top. Quantum Electron. 19(5), 1502808 (2013)

    Article  Google Scholar 

  14. Radziunas, M., Ciegis, R.: Effective numerical algorithm for simulations of beam stabilization in broad area semiconductor lasers and amplifiers. Math. Model. Anal. 19(5), 627–646 (2014)

    MathSciNet  Article  Google Scholar 

  15. Ryvkin, B.S., Avrutin, E.A.: Effect of carrier loss through waveguide layer recombination on the internal quantum efficiency in large-optical-cavity laser diodes. J. Appl. Phys. 97, 113106 (2005)

    ADS  Article  Google Scholar 

  16. Sheik-Bahae, M., Van Stryland, E.W.: Optical nonlinearities in the transparency region of bulk semiconductors. In: Willardson, R.K., Weber, E.R., Garmire, E., Kost, A. (eds.) Nonlinear Optics in Semiconductors I, Semiconductor and Semimetals, vol. 58, pp. 257–318. Elsevier, Amsterdam (1998)

    Google Scholar 

  17. Slipchenko, S.O., Sokolova, Z.N., Pikhtin, N.A., Borschev, K.S., Vinokurov, D.A., Tarasov, I.S.: Finite time of carrier energy relaxation as a cause of optical-power limitation in semiconductor lasers. Semiconductors 40(8), 990–995 (2006)

    ADS  Article  Google Scholar 

  18. Tsai, C., Tsai, C., Spencer, R.M., Lo, Y., Eastman, L.F.: Nonlinear gain coefficients in semiconductor lasers : effects of carrier heating. IEEE J. Quantum Electron. 32(2), 201–212 (1996)

    ADS  Article  Google Scholar 

  19. Tucker, R.S., Pope, D.J.: Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser. IEEE J. Quantum Electron. 19(7), 1179–1183 (1983)

    ADS  Article  Google Scholar 

  20. Wang, J., Schweizer, H.C.: A quantitative comparison of the classical rate-equation model with the carrier heating model on dynamics of the quantum-well laser: the role of carrier energy relaxation, electron-hole interaction, and auger effect. IEEE J. Quantum Electron. 33(8), 1350–1359 (1997)

    ADS  Article  Google Scholar 

  21. Wenzel, H., Erbert, G., Enders, P.M.: Improved theory of the refractive-index change in quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999)

    Article  Google Scholar 

  22. Wenzel, H., Crump, P., Pietrzak, A., Wang, X., Erbert, G., Tränkle, G.: Theoretical and experimental investigations of the limits to the maximum output power of laser diodes. N. J. Phys. 12(8), 085007 (2010)

    Article  Google Scholar 

  23. Wünsche, H.J., Bandelow, U., Wenzel, H.: Calculation of combined lateral and longitudinal spatial hole burning in $\lambda $/4 shifted DFB lasers. IEEE J. Quantum Electron. 29(6), 1751–1760 (1993)

    ADS  Article  Google Scholar 

  24. Yu, S.F., Plumb, R.G.S., Zhang, L.M., Nowell, M.C., Carroll, J.E.: Large-signal dynamic behavior of distributed-feedback lasers including lateral effects. IEEE J. Quantum Electron. 30(8), 1740–1750 (1994)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research contract 13N14026 as part of the EffiLAS/PLuS Project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anissa Zeghuzi.

Additional information

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 17.

Guest edited by Matthias Auf der Maur, Weida Hu, Slawomir Sujecki, Yuh-Renn Wu, Niels Gregersen, Paolo Bardella.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeghuzi, A., Radziunas, M., Wünsche, H. et al. Influence of nonlinear effects on the characteristics of pulsed high-power broad-area distributed Bragg reflector lasers. Opt Quant Electron 50, 88 (2018). https://doi.org/10.1007/s11082-017-1297-8

Download citation

Keywords

  • High-power lasers
  • Broad-area lasers
  • DBR lasers
  • Traveling wave model
  • Nonlinear effects
  • Spatial holeburning
  • Two-photon absorption
  • Gain compression