Abstract
We theoretically analyze the influence of nonlinear effects such as spatial holeburning, two-photon absorption and gain compression on the power–current and beam characteristics of a high-power broad-area distributed Bragg reflector laser with a stripe width of 50 \(\upmu\)m operated in pulsed mode and compare them with simulations of a similar Fabry–Pérot laser. On the one hand, spatial holeburning leads to a higher mean intensity within the cavity for a Fabry–Pérot laser and resulting higher losses in combination with two-photon absorption and gain compression, on the other hand, excitation of higher order lateral modes leads to losses through the Bragg grating. In combination with spatio-temporal power variations resolved by the utilized time-dependent traveling wave model two-photon absorption leads to higher power losses compared to those models using averaged powers.
Similar content being viewed by others
References
Adachihara, H., Hess, O., Abraham, E.: Spatiotemporal chaos in broad-area semiconductor lasers. J. Opt. Soc. Am. B 10(4), 658–665 (1993)
Avrutin, E.A., Ryvkin, B.S.: Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers. Semicond. Sci. Technol. 32, 1–11 (2016)
BALaser: a software tool for simulation of dynamics in broad area semiconductor lasers. http://www.wias-berlin.de/software/balaser/
Champagne, Y., McCarthy, N.: Influence of the axially varying quasi-Fermi-level separation of the active region on spatial hole burning in distributed-feedback semiconductor lasers. J. Appl. Phys. 72(6), 2110 (1992)
Coldren, L.A., Corzine, S., Masanovic, M.L.: Diode Lasers and Photonic Integrated Circuits, 2nd edn. Wiley, New York (2012)
Dogan, M., Michael, C.P., Zheng, Y., Zhu, L., Jacob, J.H.: Two photon absorption in high power broad area laser diodes. In: Proceedings of SPIE—High-Power Diode Laser Technology and Applications XII, vol. 8965 (2014)
Fischer, I., Hess, O., Elsäßer, W., Göbel, E.: Complex spatio-temporal dynamics in the near-field of a broad-area semiconductor laser. Europhys. Lett. 35(8), 579–584 (1996)
Gehrig, E., Hess, O.: Dynamics of high-power diode lasers. In: Diehl, R. (ed.) High-Power Diode Lasers, pp. 55–81. Springer, Berlin (2000)
Joyce, W.B.: Current-crowded carrier confinement in double-heterostructure lasers. J. Appl. Phys. 51(53), 2394–7235 (1980)
Joyce, W.B., Dixon, R.W.: Analytic approximations for the Fermi energy of an ideal Fermi gas. Appl. Phys. Lett. 31(5), 354–356 (1977)
Knigge, A., Klehr, A., Wenzel, H., Zeghuzi, A., Fricke, J., Maaßdorf, A., Liero, A., Tränkle, G.: Wavelength-stabilized high-pulse-power laser diodes for automotive LiDAR. Phys. Status Solidi A, 1700439 (2018)
Ning, C.Z., Indik, R.A., Moloney, J.V.: Effective Bloch equations for semiconductor lasers and amplifiers. IEEE J. Quantum Electron. 33(9), 1543–1550 (1997)
Perez-Serrano, A., Javaloyes, J., Balle, S.: Spectral delay algebraic equation approach to broad area laser diodes. IEEE J. Sel. Top. Quantum Electron. 19(5), 1502808 (2013)
Radziunas, M., Ciegis, R.: Effective numerical algorithm for simulations of beam stabilization in broad area semiconductor lasers and amplifiers. Math. Model. Anal. 19(5), 627–646 (2014)
Ryvkin, B.S., Avrutin, E.A.: Effect of carrier loss through waveguide layer recombination on the internal quantum efficiency in large-optical-cavity laser diodes. J. Appl. Phys. 97, 113106 (2005)
Sheik-Bahae, M., Van Stryland, E.W.: Optical nonlinearities in the transparency region of bulk semiconductors. In: Willardson, R.K., Weber, E.R., Garmire, E., Kost, A. (eds.) Nonlinear Optics in Semiconductors I, Semiconductor and Semimetals, vol. 58, pp. 257–318. Elsevier, Amsterdam (1998)
Slipchenko, S.O., Sokolova, Z.N., Pikhtin, N.A., Borschev, K.S., Vinokurov, D.A., Tarasov, I.S.: Finite time of carrier energy relaxation as a cause of optical-power limitation in semiconductor lasers. Semiconductors 40(8), 990–995 (2006)
Tsai, C., Tsai, C., Spencer, R.M., Lo, Y., Eastman, L.F.: Nonlinear gain coefficients in semiconductor lasers : effects of carrier heating. IEEE J. Quantum Electron. 32(2), 201–212 (1996)
Tucker, R.S., Pope, D.J.: Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser. IEEE J. Quantum Electron. 19(7), 1179–1183 (1983)
Wang, J., Schweizer, H.C.: A quantitative comparison of the classical rate-equation model with the carrier heating model on dynamics of the quantum-well laser: the role of carrier energy relaxation, electron-hole interaction, and auger effect. IEEE J. Quantum Electron. 33(8), 1350–1359 (1997)
Wenzel, H., Erbert, G., Enders, P.M.: Improved theory of the refractive-index change in quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999)
Wenzel, H., Crump, P., Pietrzak, A., Wang, X., Erbert, G., Tränkle, G.: Theoretical and experimental investigations of the limits to the maximum output power of laser diodes. N. J. Phys. 12(8), 085007 (2010)
Wünsche, H.J., Bandelow, U., Wenzel, H.: Calculation of combined lateral and longitudinal spatial hole burning in $\lambda $/4 shifted DFB lasers. IEEE J. Quantum Electron. 29(6), 1751–1760 (1993)
Yu, S.F., Plumb, R.G.S., Zhang, L.M., Nowell, M.C., Carroll, J.E.: Large-signal dynamic behavior of distributed-feedback lasers including lateral effects. IEEE J. Quantum Electron. 30(8), 1740–1750 (1994)
Acknowledgements
This work was supported by the German Federal Ministry of Education and Research contract 13N14026 as part of the EffiLAS/PLuS Project.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 17.
Guest edited by Matthias Auf der Maur, Weida Hu, Slawomir Sujecki, Yuh-Renn Wu, Niels Gregersen, Paolo Bardella.
Rights and permissions
About this article
Cite this article
Zeghuzi, A., Radziunas, M., Wünsche, HJ. et al. Influence of nonlinear effects on the characteristics of pulsed high-power broad-area distributed Bragg reflector lasers. Opt Quant Electron 50, 88 (2018). https://doi.org/10.1007/s11082-017-1297-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11082-017-1297-8