Influence of nonlinear effects on the characteristics of pulsed high-power broad-area distributed Bragg reflector lasers

  • Anissa ZeghuziEmail author
  • Mindaugas Radziunas
  • Hans-Jürgen Wünsche
  • Andreas Klehr
  • Hans Wenzel
  • Andrea Knigge
Part of the following topical collections:
  1. 2017 Numerical Simulation of Optoelectronic Devices


We theoretically analyze the influence of nonlinear effects such as spatial holeburning, two-photon absorption and gain compression on the power–current and beam characteristics of a high-power broad-area distributed Bragg reflector laser with a stripe width of 50 \(\upmu\)m operated in pulsed mode and compare them with simulations of a similar Fabry–Pérot laser. On the one hand, spatial holeburning leads to a higher mean intensity within the cavity for a Fabry–Pérot laser and resulting higher losses in combination with two-photon absorption and gain compression, on the other hand, excitation of higher order lateral modes leads to losses through the Bragg grating. In combination with spatio-temporal power variations resolved by the utilized time-dependent traveling wave model two-photon absorption leads to higher power losses compared to those models using averaged powers.


High-power lasers Broad-area lasers DBR lasers Traveling wave model Nonlinear effects Spatial holeburning Two-photon absorption Gain compression 



This work was supported by the German Federal Ministry of Education and Research contract 13N14026 as part of the EffiLAS/PLuS Project.


  1. Adachihara, H., Hess, O., Abraham, E.: Spatiotemporal chaos in broad-area semiconductor lasers. J. Opt. Soc. Am. B 10(4), 658–665 (1993)ADSCrossRefGoogle Scholar
  2. Avrutin, E.A., Ryvkin, B.S.: Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers. Semicond. Sci. Technol. 32, 1–11 (2016)Google Scholar
  3. BALaser: a software tool for simulation of dynamics in broad area semiconductor lasers.
  4. Champagne, Y., McCarthy, N.: Influence of the axially varying quasi-Fermi-level separation of the active region on spatial hole burning in distributed-feedback semiconductor lasers. J. Appl. Phys. 72(6), 2110 (1992)ADSCrossRefGoogle Scholar
  5. Coldren, L.A., Corzine, S., Masanovic, M.L.: Diode Lasers and Photonic Integrated Circuits, 2nd edn. Wiley, New York (2012)CrossRefGoogle Scholar
  6. Dogan, M., Michael, C.P., Zheng, Y., Zhu, L., Jacob, J.H.: Two photon absorption in high power broad area laser diodes. In: Proceedings of SPIE—High-Power Diode Laser Technology and Applications XII, vol. 8965 (2014)Google Scholar
  7. Fischer, I., Hess, O., Elsäßer, W., Göbel, E.: Complex spatio-temporal dynamics in the near-field of a broad-area semiconductor laser. Europhys. Lett. 35(8), 579–584 (1996)ADSCrossRefGoogle Scholar
  8. Gehrig, E., Hess, O.: Dynamics of high-power diode lasers. In: Diehl, R. (ed.) High-Power Diode Lasers, pp. 55–81. Springer, Berlin (2000)CrossRefGoogle Scholar
  9. Joyce, W.B.: Current-crowded carrier confinement in double-heterostructure lasers. J. Appl. Phys. 51(53), 2394–7235 (1980)ADSCrossRefGoogle Scholar
  10. Joyce, W.B., Dixon, R.W.: Analytic approximations for the Fermi energy of an ideal Fermi gas. Appl. Phys. Lett. 31(5), 354–356 (1977)ADSCrossRefGoogle Scholar
  11. Knigge, A., Klehr, A., Wenzel, H., Zeghuzi, A., Fricke, J., Maaßdorf, A., Liero, A., Tränkle, G.: Wavelength-stabilized high-pulse-power laser diodes for automotive LiDAR. Phys. Status Solidi A, 1700439 (2018)CrossRefGoogle Scholar
  12. Ning, C.Z., Indik, R.A., Moloney, J.V.: Effective Bloch equations for semiconductor lasers and amplifiers. IEEE J. Quantum Electron. 33(9), 1543–1550 (1997)ADSCrossRefGoogle Scholar
  13. Perez-Serrano, A., Javaloyes, J., Balle, S.: Spectral delay algebraic equation approach to broad area laser diodes. IEEE J. Sel. Top. Quantum Electron. 19(5), 1502808 (2013)CrossRefGoogle Scholar
  14. Radziunas, M., Ciegis, R.: Effective numerical algorithm for simulations of beam stabilization in broad area semiconductor lasers and amplifiers. Math. Model. Anal. 19(5), 627–646 (2014)MathSciNetCrossRefGoogle Scholar
  15. Ryvkin, B.S., Avrutin, E.A.: Effect of carrier loss through waveguide layer recombination on the internal quantum efficiency in large-optical-cavity laser diodes. J. Appl. Phys. 97, 113106 (2005)ADSCrossRefGoogle Scholar
  16. Sheik-Bahae, M., Van Stryland, E.W.: Optical nonlinearities in the transparency region of bulk semiconductors. In: Willardson, R.K., Weber, E.R., Garmire, E., Kost, A. (eds.) Nonlinear Optics in Semiconductors I, Semiconductor and Semimetals, vol. 58, pp. 257–318. Elsevier, Amsterdam (1998)CrossRefGoogle Scholar
  17. Slipchenko, S.O., Sokolova, Z.N., Pikhtin, N.A., Borschev, K.S., Vinokurov, D.A., Tarasov, I.S.: Finite time of carrier energy relaxation as a cause of optical-power limitation in semiconductor lasers. Semiconductors 40(8), 990–995 (2006)ADSCrossRefGoogle Scholar
  18. Tsai, C., Tsai, C., Spencer, R.M., Lo, Y., Eastman, L.F.: Nonlinear gain coefficients in semiconductor lasers : effects of carrier heating. IEEE J. Quantum Electron. 32(2), 201–212 (1996)ADSCrossRefGoogle Scholar
  19. Tucker, R.S., Pope, D.J.: Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser. IEEE J. Quantum Electron. 19(7), 1179–1183 (1983)ADSCrossRefGoogle Scholar
  20. Wang, J., Schweizer, H.C.: A quantitative comparison of the classical rate-equation model with the carrier heating model on dynamics of the quantum-well laser: the role of carrier energy relaxation, electron-hole interaction, and auger effect. IEEE J. Quantum Electron. 33(8), 1350–1359 (1997)ADSCrossRefGoogle Scholar
  21. Wenzel, H., Erbert, G., Enders, P.M.: Improved theory of the refractive-index change in quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999)CrossRefGoogle Scholar
  22. Wenzel, H., Crump, P., Pietrzak, A., Wang, X., Erbert, G., Tränkle, G.: Theoretical and experimental investigations of the limits to the maximum output power of laser diodes. N. J. Phys. 12(8), 085007 (2010)CrossRefGoogle Scholar
  23. Wünsche, H.J., Bandelow, U., Wenzel, H.: Calculation of combined lateral and longitudinal spatial hole burning in $\lambda $/4 shifted DFB lasers. IEEE J. Quantum Electron. 29(6), 1751–1760 (1993)ADSCrossRefGoogle Scholar
  24. Yu, S.F., Plumb, R.G.S., Zhang, L.M., Nowell, M.C., Carroll, J.E.: Large-signal dynamic behavior of distributed-feedback lasers including lateral effects. IEEE J. Quantum Electron. 30(8), 1740–1750 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ferdinand-Braun-Institut, Leibniz-Institut für HöchstfrequenztechnikBerlinGermany
  2. 2.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations