Skip to main content
Log in

Auto-Bäcklund transformations and solitary wave solutions for the nonlinear evolution equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present work, according to the concept of extended homogeneous balance method and with help of Maple, we get auto-Bäcklund transformations for a (2 + 1)-dimensional nonlinear evolution equation. Subsequently, by using these auto-Bäcklund transformation, exact explicit solutions of this equation are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  • Baskonus, H.M., Sulaiman, T.A., Bulut, H.: On the novel wave behaviors to the coupled nonlinear Maccari’s system with complex structure. Optik 131, 1036–1043 (2017a)

    Article  ADS  Google Scholar 

  • Baskonus, H.M., Sulaiman, T.A., Bulut, H.: New solitary wave solutions to the (2 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff and the Kadomtsev–Petviashvili hierarchy equations. Indian J. Phys. 91(10), 1237–1243 (2017b)

    Article  ADS  Google Scholar 

  • Baskonus, H.M., Sulaiman, T.A., Bulut, H.: On the new hyperbolic and trigonometric structures to the simplified MCH and SRLW equations. Eur. Phys. J. Plus 132, 350 (2017c)

    Article  Google Scholar 

  • Bekir, A.: Painleve test for some (2 + 1)-dimensional nonlinear equations. Chaos Solitons Fractals 32, 449–455 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58, 345 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M.: New solitary and optical wave structures to the Kortewegde Vries equation with dual-power law nonlinearity. Opt. Quantum Electron. 48, 564 (2016)

    Article  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M., Sandulyak, A.A.: New solitary and optical wave structures to the (1+1)-dimensional combined KdV–mKdV equation. Optik 135, 327–336 (2017a)

    Article  ADS  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M., Yazgan, T.: Novel hyperbolic behaviors to some important models arising in quantum science. Opt. Quantum Electron. 49, 349 (2017b)

    Article  Google Scholar 

  • Chai, J., Tian, B., Zhen, H.L., Sun, W.R., Liu, D.Y.: Dynamic behaviors for a perturbed nonlinear Schrdinger equation with the power-law nonlinearity in a non-Kerr medium. Commun. Nonlinear Sci. Numer. Simul. 45, 93–103 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Conte, R. (ed.): The Painleve Property: One Century Later. Springer, New York (1999)

    MATH  Google Scholar 

  • Ekici, M., Zhoub, Q., Sonmezoglu, A., Mirzazadeh, M.: Exact solitons of the coupled sine-Gordon equation in nonlinear system. Optik 136, 435–444 (2017)

    Article  ADS  Google Scholar 

  • El-Kalaawy, O.H.: Bäcklund transformation, auto-Bäcklund transformation and exact solutions for KdV-type equations. Int. J. Basic Appl. Sci. 3(4), 466–478 (2014)

    Article  Google Scholar 

  • Eslami, M., Fathi, Vajargah B., Mirzazadeh, M.: Exact solutions of modified Zakharov–Kuznetsov equation by the homogeneous balance method. Ain Shams Eng. J. 5(1), 221–225 (2014)

    Article  Google Scholar 

  • Fan, E.: Auto-Bäcklund transformation and similarity reductions for general variable coefficient KdV equations. Phys. Lett. A 294(1), 26–39 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fard, N.Y., Foroutan, M.R., Eslami, M., Mirzazadeh, M., Biswas, A.: Solitary waves and other solutions to Kadomtsev–Petviashvili equation with spatio-temporal dispersion. Rom. J. Phys. 60, 1337–1360 (2015)

    Google Scholar 

  • Gao, X.Y.: Bäcklund transformation and shock-wave-type solutions for a generalized (3 + 1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics. Ocean Eng. 96, 245–247 (2015)

    Article  Google Scholar 

  • Gao, X.Y.: Density-fluctuation symbolic computation on the (3 + 1)-dimensional variable-coefficient Kudryashov–Sinelshchikov equation for a bubbly liquid with experimental support. Phys. Lett. B 30, 1650217 (2016)

    MathSciNet  Google Scholar 

  • Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurefe, Y., Mısırlı, E., Sonmezoglu, A., Ekici, M.: Extended trial equation method to generalized nonlinear partial differential equations. Appl. Math. Comput. 219, 5253–5260 (2013)

    MathSciNet  MATH  Google Scholar 

  • Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  MATH  Google Scholar 

  • Inan, I.E., Ugurlu, Y., Bulut, H.: Auto-Bäcklund transformation for some nonlinear partial differential equation. Optik 127, 10780–10785 (2016)

    Article  ADS  Google Scholar 

  • Jawad, A.J.M., Petkovi, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217(2), 869–877 (2010)

    MathSciNet  MATH  Google Scholar 

  • Jawad, A.J.M., Mirzazadeh, M., Biswas, A.: Dynamics of shallow water waves with Gardner–Kadomtsev–Petviashvili equation. Discrete Continu. Dyn. Syst. Ser. S 8(6), 1155–1164 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaplan, M., Ozer, M.N.: Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-017-1270-6

    Google Scholar 

  • Liu, L., Tian, B., Chai, H.P., Yuan, Y.Q.: Certain bright soliton interactions of the Sasa–Satsuma equation in a monomode optical fiber. Phys. Rev. E 95, 032202 (2017)

    Article  ADS  Google Scholar 

  • Lu, B.: Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376(28), 2045–2048 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Zhang, Y., Tang, Y., Tu, J.: Hirota bilinear equations with linear subspaces of solutions. Appl. Math. Comput. 218, 7174–7183 (2012)

    MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M.: Modified simple equation method and its applications to nonlinear partial differential equations. Inf. Sci. Lett. 3(1), 1–9 (2014)

    Article  Google Scholar 

  • Mirzazadeh, M.: Analytical study of solitons to nonlinear time fractional parabolic equations. Nonlinear Dyn. 85(4), 2569–2576 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80, 387–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Zhou, Q., Biswas, A.: Exact solitons to generalized resonant dispersive nonlinear Schrödinger’s equation with power law nonlinearity. Optik 130, 178–183 (2017a)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Zhou, Q., Sonmezoglu, A.: Analytical study of solitons in the fiber waveguide with power law nonlinearity. Superlattices Microstruct. 101, 493–506 (2017b)

    Article  ADS  Google Scholar 

  • Miura, M.: Bäcklund Transformation. Springer, Berlin (1978)

    Google Scholar 

  • Moussa, M.H.M., Shikh, R.M.E.: Two applications of the homogeneous balance method for solving the generalized Hirota–Satsuma coupled KdV system with variable coefficients. Int. J. Nonlinear Sci. 7(1), 29–38 (2009)

    MathSciNet  MATH  Google Scholar 

  • Qua, Q.X., Tian, B., Liu, W.-J., Wang, P., Jiang, Y.: Soliton solutions and Bäcklund transformation for the normalized linearly coupled nonlinear wave equations with symbolic computation. Appl. Math. Comput. 218, 10386–10392 (2012)

    MathSciNet  MATH  Google Scholar 

  • Sahadevan, R.: Nonlinear differential–difference and difference equations: integrability and exact solvability. Comput. Math. Appl. 42, 627–637 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Salas, A.H., Gomez, S.C.A.: Application of the Cole–Hopf transformation for finding exact solutions to several forms of the seventh-order KdV equation. Math. Probl. Eng. 2010, 194329 (2010)

    MathSciNet  MATH  Google Scholar 

  • Shang, Y.: Bäcklund transformation, Lax pairs and explicit exact solutions for the shallow water waves equation. Appl. Math. Comput. 187, 1286–1297 (2007)

    MathSciNet  MATH  Google Scholar 

  • Shang, Y., Huang, Y., Yuan, W.: Bäcklund transformations and abundant exact explicit solutions of the Sharma–Tasso–Olver equation. Appl. Math. Comput. 217, 7172–7183 (2011)

    MathSciNet  MATH  Google Scholar 

  • Wang, P., Tian, B., Liu, W.-J., Lü, X., Jiang, Y.: Lax pair, Bäcklund transformation and multi-soliton solutions for the Boussinesq–Burgers equations from shallow water waves. Appl. Math. Comput. 218, 1726–1734 (2011)

    MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: A (3 + 1)-dimensional nonlinear evolution equation with multiple soliton solutions and multiple singular soliton solutions. Appl. Math. Comput. 215, 1548–1552 (2009)

    MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: New (3 + 1)-dimensional nonlinear evolution equations with Burgers and Sharma–Tasso–Olver equations constituting the main part. Proc. Rom. Acad. Ser. A 16(1), 32–40 (2015)

    MathSciNet  Google Scholar 

  • Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3 + 1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M., Xu, G.: An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn. 86(3), 1455–1460 (2016)

    Article  MATH  Google Scholar 

  • Xue, Y.-S., Tian, B., Ai, W.-B., Jiang, Y.: Darboux transformation and Hamiltonian structure for the Jaulent–Miodek hierarchy. Appl. Math. Comput. 218, 11738–11750 (2012)

    MathSciNet  MATH  Google Scholar 

  • Yin, H.M., Tian, B., Zhen, H.L., Chai, J., Liu, L., Sun, Y.: Solitons, bilinear Bäcklund transformations and conservation laws for a -dimensional Bogoyavlenskii–Kadontsev–Petviashili equation in a fluid, plasma or ferromagnetic thin film. J. Modern Opt. 64(7), 725–731 (2017)

    Article  ADS  Google Scholar 

  • Yokus, A., Baskonus, H.M., Sulaiman, T.A., Bulut, H.: Numerical simulation and solutions of the two-component second order KdV evolutionary system. Numer. Methods Partial Differ. Equ. 34, 1–17 (2017)

    Google Scholar 

  • Zayed, E.M.E.: A note on the modified simple equation method applied to Sharma–Tasso–Olver equation. Appl. Math. Comput. 218(7), 3962–3964 (2011)

    MathSciNet  MATH  Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, A.G.: Solitons and other exact solutions for a class of nonlinear Schrödinger-type equations. Optik 130, 1295–1311 (2017a)

    Article  ADS  Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, A.-G.: Solitons and other solutions to the nonlinear Bogoyavlenskii equations using the generalized Riccati equation mapping method. Opt. Quantum Electron. 49, 359 (2017b)

    Article  Google Scholar 

  • Zayed, E.M.E., Alurrfi, K.A.E., Al-Nowehy, A.G.: The Bäcklund transformation of the generalized Riccati equation and its applications to the nonlinear KPP equation. Phys. Astron. Int. J. 1, 7 (2017a)

    Google Scholar 

  • Zayed, E.M.E., Alurrfi, K.A.E., Al-Nowehy, A.-G.: Many exact solutions of the nonlinear KPP equation using the Bäcklund transformation of the Riccati equation. Int. J. Opt. Photon. Eng. 2, 6 (2017b)

    Google Scholar 

  • Zhou, Q., Mirzazadeh, M.: Analytical solitons for Langmuir waves in plasma physics with cubic nonlinearity and perturbations. Z. Nat. A 71(9), 807–881 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Eskişehir Osmangazi University Scientific Research Committee (Project Code: 2016-1179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Kaplan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, M., Ozer, M.N. Auto-Bäcklund transformations and solitary wave solutions for the nonlinear evolution equation. Opt Quant Electron 50, 33 (2018). https://doi.org/10.1007/s11082-017-1291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1291-1

Keywords

Navigation