Skip to main content
Log in

The influence of stress on the quartz birefringent optical filter

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Firstly, based on the elasto-optical effect of quartz crystal, the formula of the transmissivity for the quartz birefringent optical filter (QBOF) applied with the mechanical-stress is derived and analyzed by numerical simulation, which shows that when the stress is applied on the surface of the quartz crystal vertically or parallel to its optical axis, the phase retardation of the quartz crystal will change accordingly, then the output optical spectrum of QBOF applied with stress is measured by Ultra-6600 spectrophotometer, the related experimental results are agreed with the simulation results very well, which show that when the stress is applied on the surface of the quartz crystal, the central wavelength will shift the longer or shorter wavelength according to the direction and the value of the applied stress. At last, a new type of the stress compensation QBOF is proposed, it can offset the change of phase retardation of the quartz crystal caused by the variation of temperature, which will has a certain application for the stable output of optical filter when the environment temperature changes as we believe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aharon, O., Abdulhalim, I.: Liquid crystal Lyot tunable filter with extended free spectral range. Opt. Express 17, 11426–11433 (2009)

    Article  ADS  Google Scholar 

  • Cao, Z., Xuan, L., Hu, L., Lu, X., Mu, Q.: Temperature effect on the diffraction efficiency of the liquid crystal spatial light modulator. Opt. Commun. 267(1), 69–73 (2006)

    Article  ADS  Google Scholar 

  • Chang-Sheng, L., Jia, C.: How to eliminate unwanted elasto-optical birefringence from optical devices. Acta Phys. Sin. 65(3), 0378011–0378018 (2016)

    Google Scholar 

  • Chen, C.-Y., Pana, C.-L.: Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 88, 101107-1–101107-3 (2006)

    ADS  Google Scholar 

  • Dey, P., Dash, A., Saha, A.: Tunable folded Solc filter in bulk anisotropic crystal. Optik 127(22), 10366–10369 (2016)

    Article  ADS  Google Scholar 

  • Gang, C., Liji, L., Wei, H.: Crystal Physics Basis, pp. 332–337. Science Press, Beijing (2007). (in Chinese)

    Google Scholar 

  • Hobbs, J.: Tunable liquid-crystal filter helps study stellar emission. Laser Focus World 29, 29–30 (1993)

    Google Scholar 

  • Kimura, T., Saruwatari, M.: Temperature compensation of birefringent optical filters. Proc. IEEE 59(8), 1273–1274 (1971)

    Article  Google Scholar 

  • Kong, Y., Wang, Y., Zhang, L., Fang, Y.: A quartz birefringent filter insensitive to incident angle. Opt. Laser Technol. 44(5), 1497–1500 (2012)

    Article  ADS  Google Scholar 

  • Kopp, G.A., Derks, M.J., Elmore, D.F., Hassler, D.M., Woods, J.C., Streete, J.L., Blankner, J.G.: Tunable liquid-crystal filter for solar imaging at the He i 1083-nm line. Appl. Opt. 36, 291–296 (1997)

    Article  ADS  Google Scholar 

  • Lin, Y.Q., Feng, S.M.: Temperature effect on threshold voltage and optical property of twisted nematic liquid crystal with applied different voltages. Optik 121(18), 1693–1697 (2010)

    Article  ADS  Google Scholar 

  • Luo, Z., Wan, Z.: Design and tolerance analysis of optical interleaver based on retardant crystals. Optik 122, 133–135 (2011)

    Article  ADS  Google Scholar 

  • Miller, P.: Tunable narrowband birefringent filters for astronomical imaging, in Instrumentation in Astronomy VII, D. L. Crawford, ed. Proc. SPIE 1235, 466–473 (1990)

    Article  ADS  Google Scholar 

  • Santos-Aguilar, J., Gutierrez-Martinez, C.: Photonic filters using optical retarders based on birefringent optical media. Rev. Cienc. 19(2), 93–96 (2015)

    Google Scholar 

  • Shuang, Z., Wu, F.: The study on dispersive equation and thermal refractive index coefficient of quartz crystal. Acta Photon. Sin. 35(8), 1183–1186 (2006)

    Google Scholar 

  • Wullert, J.R., Patel, J.S.: Optical communications over a wide temperature range using a tunable liquid-crystal filter. IEEE Photon. Technol. Lett. 5(2), 257–259 (1993)

    Article  ADS  Google Scholar 

  • Xuan, W., Wang, D.: Error analysis and performance optimization of birefringent filter. Opt. Precis. Eng. 18(1), 52–59 (2010). (in Chinese)

    Google Scholar 

  • Ye, C.: Wavelength-tunable spectral filters based on the optical rotatory dispersion effect. Appl. Opt. 42, 4505–4513 (2003)

    Article  ADS  Google Scholar 

  • Ye, C.: A liquid crystal band-pass filter based on the optical rotatory dispersion effect. Appl. Opt. 43, 4007–4012 (2004)

    Article  ADS  Google Scholar 

  • Ye, C.: Low-loss tunable filter based on optical rotator dispersion. Appl. Opt. 45(6), 1162–1168 (2006)

    Article  ADS  Google Scholar 

  • Zhang, J., Liu, L., Zhou, Yu.: Optimum design of a novel electro-optically tunable birefringent interleaver filter. J. Opt. A: Pure Appl. Opt. 6, 1052–1057 (2004)

    Article  ADS  Google Scholar 

  • Zheng, G., Ouyang, Z., Xu, S.: A high-speed widely tunable Šolc-type flat-top filter based on the dual transverse Pockels effect. J. Opt. 12, 035213-1–035213-4 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 61305014), China Scholarship Council (No. 201508310033), National Nature Science Foundation of Shanghai (No. 13ZR1455200) “Chen Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 13CG60).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Liu, Y., Kong, Y. et al. The influence of stress on the quartz birefringent optical filter. Opt Quant Electron 50, 28 (2018). https://doi.org/10.1007/s11082-017-1289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1289-8

Keywords

Navigation