Skip to main content
Log in

Novel complex and hyperbolic forms to the strain wave equation in microstructured solids

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study applies the powerful sine-Gordon expansion method in acquiring some new solutions to the strain wave equation in micro-structured solids arising in mathematical physics. The strain wave equation in micro-structured solids is used in modelling wave propagation in micro-structured materials. We successfully acquire some new solitary wave solutions with hyperbolic function structure. By taking some suitable values of parameters involved in the solutions, we plot the 2D, 3D and contour graphs of all the obtained solutions in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbar, M.A., Ali, N.H.M.: The improved F-expansion method with Riccati equation and its applications in mathematical physics. Cogent Math. 4, 1282577 (2017)

    Google Scholar 

  • Akbari, M.: Application of Kudryashov and functional variable methods to solve the complex KdV equation. Comput. Methods Differ. Equ. 2(1), 50–55 (2014)

    MathSciNet  MATH  Google Scholar 

  • Alam, MdN, Akbar, MdA, Mohyud-Din, S.T.: General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized \((G^{^{\prime }}/G)\)-expansion method. Alex. Eng. J. 53, 233–241 (2014)

    Article  Google Scholar 

  • Alquran, M.T.: Applying differential transform method to nonlinear partial differential equations: a modified approach. Appl. Appl. Math. 7(1), 155–163 (2012)

    MathSciNet  MATH  Google Scholar 

  • Arbabi, S., Najafi, M., Najafi, M.: New periodic and soliton solutions of (2+1)-dimensional soliton equation. J. Adv. Comput. Sci. Technol. 1(4), 232–239 (2012)

    Article  MATH  Google Scholar 

  • Ayati, Z., Hosseini, K., Mirzazadeh, M.: Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids. Nonlinear Eng. 6(1), 25–29 (2017)

    Article  ADS  Google Scholar 

  • Baskonus, H.M., Askin, M.: Travelling wave simulations to the modified Zakharov–Kuzentsov model arising in plasma physics. In: 6th International Youth Science Forum “LITTERIS ET ARTIBUS” Computer Science and Engineering, Lviv, Ukraine, 24–26 (November 2016)

  • Baskonus, H.M.: New acoustic wave behaviors to the Davey–Stewartson equation with power nonlinearity arising in fluid dynamics. Nonlinear Dyn. 86(1), 177–183 (2016)

    Article  MathSciNet  Google Scholar 

  • Baskonus, H.M., Bulut, H.: Exponential prototype structure for (2+1)-dimensional Boiti–Leon–Pempinelli systems in mathematical physics. Waves Random Complex Media 26(2), 189–196 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M.: New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity. Opt. Quant. Electron. 48(564), 1–14 (2016)

    Google Scholar 

  • Chen, Y., Liu, R.: Some new nonlinear wave solutions for two (3+1)-dimensional equations. Appl. Math. Comput. 260, 397–411 (2015)

    MathSciNet  Google Scholar 

  • Fang, J.P., Ren, Q.B., Zheng, C.L.: New exact solutions and fractal localized structures for the (2+1)-dimensional Boiti–Leon–Pempinelli system. Z. Naturforsch. 60, 245–251 (2005)

    ADS  Google Scholar 

  • Fu, Y., Li, J.: Exact stationary-wave solutions in the standard model of the kerr-nonlinear optical fiber with the bragg grating. J. Appl. Anal. Comput. 7(3), 1177–1184 (2017)

    MathSciNet  Google Scholar 

  • Hafez, M.G., Akbar, M.A.: An exponential expansion method and its application to the strain wave equation in microstructured solids. Ain Shams Eng. J. 6, 683–690 (2015)

    Article  Google Scholar 

  • Inan, I.E., Kaya, D.: Exact solutions of some nonlinear partial differential equations. Phys. A 381, 104–115 (2007)

    Article  MathSciNet  Google Scholar 

  • Jabbari, A., Kheiri, H.: Homotopy analysis and homotopy pade methods for (2+1)-dimensional Boiti–Leon–Pempinelli system. Int. J. Nonlinear Sci. 12(3), 291–297 (2011)

    MathSciNet  MATH  Google Scholar 

  • Jawad, A.J.M.: Soliton solutions for nonlinear systems (2+1)-dimensional equations. IOSR J. Math. 1(6), 27–34 (2012)

    Article  Google Scholar 

  • Kumar, H., Chand, F.: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with self-steepening and self-frequency shift effects. Opt. Laser Technol. 54, 265–273 (2013a)

    Article  ADS  Google Scholar 

  • Kumar, H., Chand, F.: Applications of extended F-expansion and projective Ricatti equation methods to (2+1)-dimensional soliton equations. AIP Adv. 3, 032128 (2013b)

    Article  ADS  Google Scholar 

  • Kumar, H., Malik, A., Chand, F.: Analytical spatiotemporal soliton solutions to (3+1)-dimensional cubic-quintic nonlinear Schrödinger equation with distributed coefficients. J. Math. Phys. 53, 103704 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kumar, H., Malik, A., Chand, F.: Soliton solutions of some nonlinear evolution equations with time-dependent coefficients. PRAMANA J. Phys. 80(2), 361–367 (2013)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M.: Modified simple equation method and its applications to nonlinear partial differential equations. Inf. Sci. Lett. 3(1), 1–9 (2014)

    Article  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Eslami, M., Krishnan, E.V., Kumar, S., Biswas, A.: Solitons and other solutions to Wu–Zhang system. Nonlinear Anal. Modell. Control 22(4), 441–458 (2017)

    Article  MathSciNet  Google Scholar 

  • Mohyud-Din, S.T., Noor, M.A., Noor, K.I.: Exp-function method for traveling wave solutions of modified Zakharov–Kuznetsov equation. J. King Saud Univ. (Science) 22, 213–216 (2010)

    Article  Google Scholar 

  • Moslem, W.M., Ali, S., Shukla, P.K., Tang, X.Y., Rowlands, G.: Solitary, explosive and periodic solutions of the quantum Zakharov–Kuznetsov equation and its transverse instability. Phys. Plasmas 14, 1064–1070 (2007)

    Google Scholar 

  • Naher, H., Abdullah, F.A.: The modified Benjamin–Bona–Mahony equation via the extended generalized Riccati equation mapping method. Appl. Math. Sci. 6(111), 5495–5512 (2012)

    MathSciNet  MATH  Google Scholar 

  • Ozpinar, F., Baskonus, H.M., Bulut, H.: On the complex and hyperbolic structures for the (2+1)-dimensional boussinesq water equation. Entropy 17(12), 8267–8277 (2015)

    Article  ADS  Google Scholar 

  • Qi, J.M., Zhang, F., Yuan, W.J., Huang, Z.F.: Some new traveling wave exact solutions of the (2+1)-dimensional Boiti–Leon–Pempinelli equations. Sci. World J. 2014, 743254 (2014)

    Google Scholar 

  • Samsonov, A.M.: Strain Solitons and How to Construct Them. Chapman and Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  • Sonmezoglu, A., Ekici, M., Moradi, M., Mirzazadeh, M., Zhou, Q.: Exact solitary wave solutions to the new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Optik-Int. J. Light Electron Opt. 128, 77–82 (2017)

    Article  Google Scholar 

  • Taghizadeh, N., Mirzazadeh, M., Paghaleh, A.S., Vahidi, J.: Exact solutions of nonlinear evolution equations by using the modified simple equation method. Ain Shams Eng. J. 3, 321–325 (2012)

    Article  Google Scholar 

  • Wang, G., Xu, T., Johnson, S., Biswas, A.: Solitons and Lie group analysis to an extended quantum Zakharov–Kuznetsov equation. Astrophys. Space Sci. 349, 317–327 (2014)

    Article  ADS  Google Scholar 

  • Wazwaz, A.M.: New (3+1)-dimensional nonlinear evolution equations with burgers and sharma-tosso-olver equations constituting the main parts. Proc. Rom. Acad. A 16(1), 32–40 (2015)

    MathSciNet  Google Scholar 

  • Weisstein, E.W.: Concise Encyclopedia of Mathematics, 2nd edn. CRC Press, New York (2002)

    MATH  Google Scholar 

  • Yan, C.: A simple transformation for nonlinear waves. Phys. Lett. A 22(4), 77–84 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yan, Z., Zhang, H.: New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics. Phys. Lett. A 252, 291–296 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zayed, E.M.E., Alurrfi, K.A.E.: The homogeneous balance method and its applications for finding the exact solutions for nonlinear evolution equations. Ital. J. Pure Appl. Math. 33, 307–318 (2014)

    MathSciNet  MATH  Google Scholar 

  • Zhao, Y.M.: F-expansion method and its application for finding new exact solutions to the Kudryashov–Sinelshchikov equation. J. Appl. Math. 2013, 895760 (2013)

    MathSciNet  MATH  Google Scholar 

  • Zhao, Z., Zhang, Y., Rui, W.: Backlund transformation and solutions of a (3+1)-dimensional nonlinear evolution equation. Appl. Math. Comput. 248, 456–462 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Bulut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskonus, H.M., Sulaiman, T.A. & Bulut, H. Novel complex and hyperbolic forms to the strain wave equation in microstructured solids. Opt Quant Electron 50, 14 (2018). https://doi.org/10.1007/s11082-017-1279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1279-x

Keywords

Navigation