Skip to main content
Log in

Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The mathematical modelling of physical systems is generally expressed by nonlinear evolution equations. Therefore, it is critical to obtain solutions to these equations. We have employed the Hirota’s method to derive multiple soliton solutions to (2+1)-dimensional nonlinear evolution equation. Then we have studied the transformed rational function method to construct different types of analytical solutions to the nonlinear evolution equations. This algorithm provides a more convenient and systematical handling of the solution process of nonlinear evolution equations, unifying the homogeneous balance method, the mapping method, the tanh-function method, the F-expansion method and the exp-function method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ablowitz, M.J., Clarkson, P.A.: Nonlinear Evolution Equations and Inverse Scattering, Solitons. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  • Akter, J., Akbar, M.A.: Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method. Results Phys. 5, 125–130 (2015)

    Article  ADS  Google Scholar 

  • Alsayyeda, O., Jaradat, H.M., Jaradat, M.M.M., Mustafad, Z., Shatate, F.: Multi-soliton solutions of the BBM equation arisen in shallow water. J. Nonlinear Sci. Appl. 9, 1807–1814 (2016)

    Article  MathSciNet  Google Scholar 

  • Bekir, A.: Painleve test for some (2+1)-dimensional nonlinear equations. Chaos Solitons Fractals 32, 449–455 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chai, J., Tian, B., Zhen, H.L., Sun, W.R., Liu, D.Y.: Dynamic behaviors for a perturbed nonlinear Schrdinger equation with the power-law nonlinearity in a non-Kerr medium. Commun. Nonlinear Sci. Numer. Simul. 45, 93–103 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Cheemaa, N., Younis, M.: New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system. Nonlinear Dyn. 83(3), 1395–1401 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ebadi, G., Fard, N.Y., Triki, H., Biswas, A.: Exact solutions of the (2+1)-dimensional Camassa–Holm Kadomtsev–Petviashvili equation. Nonlinear Anal. Model. Control 17(3), 280–296 (2012)

    MathSciNet  MATH  Google Scholar 

  • Ekici, M., Zhou, Q., Sonmezoglu, A., Mirzazadeh, M.: Exact solitons of the coupled sine-Gordon equation in nonlinear system. Optik 136, 435–444 (2017)

    Article  ADS  Google Scholar 

  • Eslami, M., Fathi, V.B., Mirzazadeh, M.: Exact solutions of modified Zakharov–Kuznetsov equation by the homogeneous balance method. Ain Shams Eng. J. 5(1), 221–225 (2014)

    Article  Google Scholar 

  • Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    Article  ADS  MATH  Google Scholar 

  • Fard, N.Y., Foroutan, M.R., Eslami, M., Mirzazadeh, M., Biswas, A.: Solitary waves and other solutions to Kadomtsev–Petviashvili equation with spatio-temporal dispersion. Romanian J. Phys. 60, 1337–1360 (2015)

    Google Scholar 

  • Gao, X.Y.: Bcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type KadomtsevPetviashvili equation in fluid mechanics. Ocean Eng. 96, 245–247 (2015)

    Article  Google Scholar 

  • Gao, X.Y.: Density-fluctuation symbolic computation on the (3+1)-dimensional variable-coefficient Kudryashov–Sinelshchikov equation for a bubbly liquid with experimental support. Phys. Lett. B 30, 1650217 (2016)

    MathSciNet  Google Scholar 

  • Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Hirota, R.: Exact solution of the korteweg-de vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  MATH  Google Scholar 

  • Jabbari, A., Kheiri, H., Bekir, A.: Exact solutions of the coupled Higgs equation and the Maccari system using He’s semi-inverse method and ($G^{\prime }/G$)-expansion method. Comput. Math. Appl. 62, 2177–2186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Jawad, A.J.M., Mirzazadeh, M., Biswas, A.: Dynamics of shallow water waves with Gardner–Kadomtsev–Petviashvili equation. Discrete Contin. Dyn. Syst. Ser. S 8(6), 1155–1164 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Jordan, P.M.: On the application of the Cole–Hopf transformation to hyperbolic equations based on second-sound models. Math. Comput. Simul. 81, 18–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaplan, M., Bekir, A., Ozer, M.N.: The Auto-Bäcklund transformations for nonlinear evolution equations. In: International Congress on Fundamental and Applied Sciences, Istanbul-Turkey (2016a)

  • Kaplan, M., Bekir, A., Akbulut, A.: A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics. Nonlinear Dyn. 85(4), 2843–2850 (2016b)

    Article  MathSciNet  Google Scholar 

  • Kaplan, M., Akbulut,A., Bekir, A.: The Auto-Backlund transformations for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. In: AIP Conference Proceedings, vol. 1798, 1, p. 020071 (2017)

  • Kurt, A., Tasbozan, O., Cenesiz, Y.: Homotopy analysis method for conformable Burgers–Korteweg-de Vries Equation. Bull. Math. Sci. Appl. 17, 17–23 (2016)

    Google Scholar 

  • Li, B., Chen, Y., Zhang, H.: Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV–Burgers-type equations with nonlinear terms of any order. Phys. Lett. A 305, 377–382 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Liu, G.T., Fan, T.Y.: New applications of developed Jacobi elliptic function expansion methods. Phys. Lett. A 345, 161–166 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Liu, L., Tian, B., Chai, H.P., Yuan, Y.Q.: Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber. Phys. Rev. E 95, 032202 (2017)

    Article  ADS  Google Scholar 

  • Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the (3+1)-dimensional Jimbo–Miwa equation. Chaos Solitons Fractals 42, 1356–1363 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M.: Modified simple equation method and its applications to nonlinear partial differential Equations. Inf. Sci. Lett. 3(1), 1–9 (2014)

    Article  Google Scholar 

  • Mirzazadeh, M.: Soliton solutions of Davey–Stewartson equation by trial equation method and ansatz approach. Nonlinear Dyn. 82(4), 1775–1780 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M.: Analytical study of solitons to nonlinear time fractional parabolic equations. Nonlinear Dyn. 85(4), 2569–2576 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Zhou, Q., Sonmezoglu, A.: Analytical study of solitons in the fiber waveguide with power law nonlinearity. Superlattices Microstruct. 101, 493–506 (2017)

    Article  ADS  Google Scholar 

  • Miura, M.: Backlund Transformation. Springer, Berline (1978)

    Google Scholar 

  • Peng, Y.Z.: A mapping method for obtaining exact travelling wave solutions to nonlinear evolution equations. Chin. J. Phys. 41, 103–110 (2003)

    MathSciNet  Google Scholar 

  • Sahoo, S., Garai, G., Saha Ray, S.: Lie symmetry analysis for similarity reduction and exact solutions of modified KdV–Zakharov–Kuznetsov equation. Nonlinear Dyn. 87(3), 1995–2000 (2017)

    Article  MathSciNet  Google Scholar 

  • Wang, F., Li, W., Zhang, H.Q.: A systematic method to construct polynomials possessing linear superposition principle and dispersion relation. Appl. Math. Comput. 218, 3925–3933 (2011)

    MathSciNet  MATH  Google Scholar 

  • Wang, Y.P., Tian, B., Wang, M., Wang, Y.F., Sun, Y., Xie, X.Y.: Bäcklund transformations and soliton solutions for a (2+1)-dimensional Korteweg-de Vries-type equation in water waves. Nonlinear Dyn. 81(4), 1815–1821 (2015)

    Article  MATH  Google Scholar 

  • Wazwaz, A.M.: Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations. Appl. Math. Comput. 203, 592–597 (2008)

    MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85, 731–737 (2016)

    Article  MathSciNet  Google Scholar 

  • Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Xue, Y.S., Tian, B., Ai, W.B., Jiang, Y.: Darboux transformation and Hamiltonian structure for the Jaulent–Miodek hierarchy. Appl. Math. Comput. 218, 11738–11750 (2012)

    MathSciNet  MATH  Google Scholar 

  • Yin, H.M., Tian, B., Zhen, H.L., Chai, J., Liu, L., Sun, Y.: Solitons, bilinear Bcklund transformations and conservation laws for a-dimensional Bogoyavlenskii–Kadontsev–Petviashili equation in a fluid, plasma or ferromagnetic thin film. J. Mod. Opt. 64(7), 725–731 (2017)

    Article  ADS  Google Scholar 

  • Yu, F., Feng, L., Li, L.: Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions. Nonlinear Dyn. 88(2), 1257–1271 (2017)

    Article  MATH  Google Scholar 

  • Zayed, E.M.E., Abdelaziz, M.A.M.: The two variables ($ G^{\prime }/G,1/G$)-expansion method for solving the nonlinear KdV–mKdV equation. Math. Probl. Eng. 2012, 725061 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, A.G.: The multiple exp-function method and the linear superposition principle for solving the (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff equation. Z. Naturforsch. 70, 775–779 (2015)

    Google Scholar 

  • Zayed, E.M.E., Amer, Y.A.: The first integral method and its application for deriving the exact solutions of a higher-order dispersive cubic-quintic nonlinear Schrödinger equation. Comput. Math. Model. 27(1), 80–94 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhai, W., Chen, D.Y.: Rational solutions of the general nonlinear Schrödinger equation with derivative. Phys. Lett. A 372, 4217–4221 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, S., Zhang, H.Q.: A transformed rational function method for (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Pramana J. Phys. 76(4), 561–571 (2011)

    Article  ADS  Google Scholar 

  • Zhou, Q., Mirzazadeh, M.: Analytical solitons for Langmuir waves in plasma physics with cubic nonlinearity and perturbations. Zeitschrift fr Naturforschung A 71(9), 807–881 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Eskişehir Osmangazi University Scientific Research Committee (Project Code: 2016-1179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Kaplan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, M., Ozer, M.N. Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation. Opt Quant Electron 50, 2 (2018). https://doi.org/10.1007/s11082-017-1270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1270-6

Keywords

Navigation