Skip to main content
Log in

Effect of halogens doping on transparent conducting properties of SnO2 rutile: an ab initio investigation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We discuss the fundamental transparent conducting properties of halogens doped SnO2 rutile systems include the structural, electronic structure, optical and electrical properties. Within this study, we employ the first-principles calculation of the full potential linearized augmented plane wave (FP-LAPW) method based on the density function theory and semiclassical Boltzmann equations. It is found that the halogens substitutional doping cause an expansion of SnO2 lattice constants and low thermodynamic perturbation. The dopants act as shallow donors by creating impurity states at the bottom of the conduction band that lead to blue-shift in the optical transparency. Moreover, the electrical conductivity of SnO2 Rutile is significantly improving by halogens doping. In fact, these results could stimulate the future experimental works for elaborating new generations of the transparent conducting oxides in an optimal way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agekyan, V.T.: Spectroscopic properties of semiconductor crystals with direct forbidden energy gap. Phys. Status Solidi A 43, 11–42 (1977)

    Article  ADS  Google Scholar 

  • Amin, B., Ahmad, M.I., Maqboo, S., Said, G., Ahmad, R.J.: Ab initio study of the bandgap engineering of Al1 − xGaxNAl1 − xGaxN for optoelectronic applications. J. Appl. Phys. 109, 023109 (2011)

    Article  ADS  Google Scholar 

  • Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K: an augmented plane wave and local orbitals program for calculating crystal properties. In: Schwarz, K. (ed) Vienna University of Technology, Austria (2001)

  • Boscarino, S., Crupi, I., Mirabell, S., Simone, F., Terrasi, A.: TCO/Ag/TCO transparent electrodes for solar cells application. Appl. Phys. A 116, 1287–1291 (2014)

    Article  ADS  Google Scholar 

  • Cheng, D., Zhang, M., Chen, J., Yang, C., Zeng, X., Cao, D.: Computer screening of dopants for the development of new SnO2-based transparent conducting oxides. J. Phys. Chem. C 118, 2037–2043 (2014)

    Article  Google Scholar 

  • Gordon, R.G.: Criteria for choosing transparent conductors. MRS Bull. 25, 52–57 (2000)

    Article  Google Scholar 

  • Granqvist, C.G.: Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007)

    Article  Google Scholar 

  • Hartnagel, H.L., Das, A.L., Jain, A.K., Jagadish, C.: Semiconducting Transparent Thin Films. Institute of Physics Publishing, Bristol (1995)

    Google Scholar 

  • Hassan, F.E.H., Alaeddine, A., Zoaeter, M., Rachidi, I.: First-principles investigation of SnO2 at high pressure. Int. J. Mod. Phys. B 19, 4081–4092 (2005)

    Article  ADS  Google Scholar 

  • Jäger, T., Bissig, B., Döbeli, M., Tiwari, A.N., Romanyuk, Y.E.: Thin films of SnO2: F by reactive magnetron sputtering with rapid thermal post annealing. Thin Solid Films 553, 21–25 (2014)

    Article  ADS  Google Scholar 

  • Kim, G.K.H., Lee, S.W., Shin, D.W., Park, C.G.: Effect of antimony addition on electrical and optical properties of tin oxide film. J. Am. Ceram. Soc. 77, 915–921 (1994)

    Article  Google Scholar 

  • Kim, H., Auyeung, R.C., Pique, Y.: Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films 516, 5052–5056 (2008)

    Article  ADS  Google Scholar 

  • Liu, C.M., Chen, X.R., Ji, G.F.: First-principles investigations on structural, elastic and electronic properties of SnO2 under pressure. Comput. Mater. Sci. 50, 1571–1577 (2011)

    Article  Google Scholar 

  • Madsen, G.K.H., Singhb, D.J.: BoltzTraP: a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  ADS  MATH  Google Scholar 

  • Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, 35–44 (2005)

    Article  ADS  Google Scholar 

  • Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244–247 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Muto, Y., Oka, N., Tsukamoto, N., Iwabuchi, Y., Kotsubo, H., Shigesato, Y.: High-rate deposition of Sb-doped SnO2 films by reactive sputtering using the impedance control method. Thin Solid Films 520, 1178–1181 (2011)

    Article  ADS  Google Scholar 

  • Okoye, C.M.I.: Electronic structures and optical properties of Ca5(BO3)3F: a systematical first-principles study. J. Phys.: Condens. Matter 15, 5945 (2003)

    ADS  Google Scholar 

  • Ouerfelli, J., Djobo, S.O., Bernede, J.C., Cattin, L., Morsli, M., Berredjem, Y.: Organic light emitting diodes using fluorine doped tin oxide thin films, deposited by chemical spray pyrolysis, as anode. Mater. Chem. Phys. 112, 198–201 (2008)

    Article  Google Scholar 

  • Park, J.Y., Zhao, X.G., Gu, H.B.: Synthesis and characterization of SnO2 nanostructure using Bombyx mori (L.) silkworm cocoon as biomass template for photocatalytic reaction. Mater. Lett. 141, 187–190 (2015)

    Article  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  • Qin, G., Li, D., Feng, Z., Liu, S.: First principles study on the properties of p-type conducting In: SnO2. Thin Solid Films 517, 3345–3349 (2009)

    Article  ADS  Google Scholar 

  • Saniz, R., Dixit, H., Lamoen, D., Partoens, B.: Quasiparticle energies and uniaxial pressure effects on the properties of SnO2. Appl. Phys. Lett. 97, 261901 (2010)

    Article  ADS  Google Scholar 

  • Slassi, A.: New potential dopants for BaSnO3-based transparent conducting oxides. Opt. Quant. Electron. 48, 350 (2016a)

    Article  Google Scholar 

  • Slassi, A.: Ab initio study on the structural, electronic, optical and electrical properties of Mo-, Nb- and Ta-doped rutile SnO2. Opt. Quant. Electron. 48, 160 (2016b)

    Article  Google Scholar 

  • Sun, J., Wang, H., He, J., Tian, Y.: Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys. Rev. B 71, 123132 (2005)

    Google Scholar 

  • Tierney, P., Ennis, T.J., Allen, A., Wright, J.: The role of mid-band gap defect levels in persistent photoconductivity in RF sputtered SnO2 thin films. Thin Solid Films 603, 50–55 (2016)

    Article  ADS  Google Scholar 

  • Tran, T., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange correlation potential. Phy. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  • Xu, J., Huang, S., Wang, Z.: First principle study on the electronic structure of fluorine-doped SnO2. Solid State Commun. 149, 527–531 (2009)

    Article  ADS  Google Scholar 

  • Yates, H.M., Evans, P., Sheel, D.W., Nicolay, S., Ding, L., Ballif, C.: The development of high performance SnO2: F as TCOs for thin film silicon solar cells. Surf. Coat. Technol. 213, 167–174 (2012)

    Article  Google Scholar 

  • Zhang, G., Qin, G., Yu, G., Hu, Q., Fu, H., Shao, C.: Ab initio investigation on a promising transparent conductive oxide, Nb:SnO2. Thin Solid Films 520, 5965–5970 (2012)

    Article  ADS  Google Scholar 

  • Ziman, J.M.: Electrons and Phonons. OxfordUniversity Press, New York (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Slassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slassi, A., Hammi, M., Oumekloul, Z. et al. Effect of halogens doping on transparent conducting properties of SnO2 rutile: an ab initio investigation. Opt Quant Electron 50, 8 (2018). https://doi.org/10.1007/s11082-017-1262-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1262-6

Keywords

Navigation