Photocatalytic properties of zinc oxide nanorods grown by different methods

Abstract

A comparison of photocatalytic properties of ZnO nanostructures fabricated by different methods was carried out. The photocatalytic properties of as grown and Ar-ion-treated ZnO materials were tested using photocatalytic degradation of an aqueous solution of methyl orange dye serving as a model water contaminant. The reaction rate constants of methyl orange photodegradation for untreated ZnO nanorods grown by the method of gas-transport reactions and hydrothermal method were equal to 5.3 × 10−5 and 3.7 × 10−4 s−1, respectively, whereas for the case of the Ar-ion-treated samples they reached 1.85 × 10−4 and 5.9 × 10−4 s−1, respectively. Based on the analysis of the photoluminescence spectra, it is assumed that the difference in photocatalytic activity is connected with different type of defects predominant on the surfaces of ZnO nanorods grown by the hydrothermal and gas-transport reactions methods. The experimental results show that ZnO nanostructures grown by the hydrothermal method would be promising for producing efficient catalysts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abed, S., Aida, M.S., Bouchouit, K., Arbaoui, A., Iliopoulos, K., Sahraoui, B.: Non-linear optical and electrical properties of ZnO doped Ni thin films obtained using spray ultrasonic technique. Opt. Mater. 33(6), 968–972 (2011). https://doi.org/10.1016/j.optmat.2011.01.018

    ADS  Article  Google Scholar 

  2. Ban, K.: Foreword. In: R. Connor (ed.) The United Nations World Water Development Report 2015: Water for a Sustainable World. UNESCO Publishing, Paris (2015)

  3. Baruah, S., Khan, M.N., Dutta, J.: Perspectives and applications of nanotechnology in water treatment. Environ. Chem. Lett. 14(1), 1–14 (2016). https://doi.org/10.1007/s10311-015-0542-2

    Article  Google Scholar 

  4. Chen, C.-C., Hu, S.-H., Fu, Y.-P.: Effects of surface hydroxyl group density on the photocatalytic activity of Fe3+-doped TiO2. J. Alloys Compd. 632, 326–334 (2015). https://doi.org/10.1016/j.jallcom.2015.01.206

    Article  Google Scholar 

  5. Ge, M., Guo, C., Zhu, X., Ma, L., Han, Z., Hu, W., Wang, Y.: Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Front. Environ. Sci. Eng. China 3, 271–280 (2009). https://doi.org/10.1007/s11783-009-0035-2

    Article  Google Scholar 

  6. Harun, K., Yaakob, M.K., Taib, M.F.M., Sahraoui, B., Ahmad, Z.A., Mohamad, A.A.: Efficient diagnostics of the electronic and optical properties of defective ZnO nanoparticles synthesized using the sol–gel method: experimental and theoretical studies. Mater. Res. Express 4(8), 085908-1–085908-15 (2017)

    ADS  Article  Google Scholar 

  7. Hatch, S.M., Briscoe, J., Sapelkin, A., Gillin, W.P., Gilchrist, J.B., Ryan, M.P., Heutz, S., Dunn, S.: Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance. J. Appl. Phys. 113, 204501-1–204501-9 (2013). https://doi.org/10.1063/1.4805349

    ADS  Article  Google Scholar 

  8. Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501-1–126501-29 (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    ADS  Article  Google Scholar 

  9. Janotti, A., Van de Walle, C.G.: Native Point Defects and Doping in ZnO. In: Litton, C.W., Reynolds, D.C., Collins, T.C. (eds.) Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, Chap. 5, vol. 1. Wiley, Chichester (2011)

  10. Kapustianyk, V., Turko, B., Kostruba, A., Sahraoui, B., Sofiani, Z., Dabos-Seignon, S., Barwinski, B., Eliyashevskyi, Yu.: Influence of size effect and sputtering conditions on the crystallinity and optical properties of ZnO thin films. Opt. Commun. 269, 346–350 (2007)

    ADS  Article  Google Scholar 

  11. Kapustianyk, V., Turko, B., Rudyk, V., Rudyk, Y., Rudko, M., Panasiuk, M., Serkiz, R.: Effect of vacuumization on the photoluminescence and photoresponse decay of the zinc oxide nanostructures grown by different methods. Opt. Mater. 56, 71–74 (2016). https://doi.org/10.1016/j.optmat.2016.01.057

    ADS  Article  Google Scholar 

  12. Kostruba, A., Kulyk, B., Turko, B.: Ellipsometric studies of optical properties of copper doped zinc oxide films on glass substrates. J. Alloys Compd. 518, 96–100 (2012)

    Article  Google Scholar 

  13. Kulyk, B., Essaidi, Z., Kapustianyk, V., Turko, B., Rudyk, V., Partyka, M., Addou, M., Sahraoui, B.: Second and third order nonlinear optical properties of nanostructured ZnO thin films deposited on α-BBO and LiNbO3. Opt. Commun. 281, 6107–6111 (2008)

    ADS  Article  Google Scholar 

  14. Kulyk, B., Essaidi, Z., Luc, J., Sofiani, Z., Boudebs, G., Sahraoui, B., Kapustianyk, V., Turko, B.: Second and third order nonlinear optical properties of microrods ZnO films deposited on sapphire substrates by thermal oxidation of metallic zinc. J. Appl. Phys. 102, 113113-1–113113-6 (2007)

    ADS  Article  Google Scholar 

  15. Kulyk, B., Sahraoui, B., Figa, V., Turko, B., Rudyk, V., Kapustianyk, V.: Influence of Ag, Cu dopants on the second and third harmonic response of ZnO films. J. Alloys Compd. 481, 819–825 (2009)

    Article  Google Scholar 

  16. Kumar, S., Sahare, P.D.: Effect of surface defects on green luminescence from ZnO nanoparticles. AIP Conf. Proc. 1393, 159–160 (2011). https://doi.org/10.1063/1.3653658

    ADS  Article  Google Scholar 

  17. Kumar, S., Sahare, P.D.: Effects of annealing on the surface defects of zinc oxide nanoparticles. NANO 7, 1250022-1–1250022-9 (2012). https://doi.org/10.1142/S1793292012500221

    Article  Google Scholar 

  18. Lee, J.-M., Kim, K.-K., Park, S.-J., Choi, W.-K.: Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO. Appl. Phys. Lett. 78, 3842–3844 (2001). https://doi.org/10.1063/1.1379061

    ADS  Article  Google Scholar 

  19. Lee, K.M., Lai, C.W., Ngai, K.S., Juan, J.C.: Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016). https://doi.org/10.1016/j.watres.2015.09.045

    Article  Google Scholar 

  20. Lv, J., Gong, W., Huang, K., Zhu, J., Meng, F., Song, X., Sun, Z.: Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol–gel method. Superlattices Microstruct. 50, 98–106 (2011). https://doi.org/10.1016/j.spmi.2011.05.003

    ADS  Article  Google Scholar 

  21. Mishra, R., Yadav, R.S., Pandey, A.C., Sanjay, S.S., Dar, C.: Formation of ZnO@ Cd (OH) 2 core–shell nanoparticles by sol–gel method: an approach to modify surface chemistry for stable and enhanced green emission. J. Lumin. 130, 365–373 (2010). https://doi.org/10.1016/j.jlumin.2009.09.022

    Article  Google Scholar 

  22. Moafi, H.F., Hafezi, M., Khorram, S., Zanjanchi, M.A.: The effects of non-thermal plasma on the morphology of Ce-doped ZnO: synthesis, characterization and photocatalytic activity of hierarchical nanostructures. Plasma Chem. Plasma Process. 37, 159–176 (2017). https://doi.org/10.1007/s11090-016-9748-8

    Article  Google Scholar 

  23. Moore, J.C., Louder, R., Thompson, C.V.: Photocatalytic activity and stability of porous polycrystalline ZnO thin-films grown via a two-step thermal oxidation process. Coatings 4, 651–669 (2014). https://doi.org/10.3390/coatings4030651

    Article  Google Scholar 

  24. Palma, P., Fialho, S., Alvarenga, P., Santos, C., Brás, T., Palma, G., Cavaco, C., Gomes, R., Neves, L.A.: Membranes technology used in water treatment: chemical, microbiological and ecotoxicological analysis. Sci. Total Environ. 568, 998–1009 (2016). https://doi.org/10.1016/j.scitotenv.2016.04.208

    ADS  Article  Google Scholar 

  25. Panasiuk, M.R., Turko, B.I., Kapustianyk, V.B., Stanko, O.P., Mandryka, A.V., Serkiz, R.Y., Dubov, Y.H.: Photo-and thermostimulated luminescence of ZnO nanowires. J. Appl. Spectrosc. 80, 240–243 (2013). https://doi.org/10.1007/s10812-013-9752-1

    ADS  Article  Google Scholar 

  26. Park, J.S., Jeong, J.K., Mo, Y.G., Kim, H.D., Kim, S.I.: Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 90, 262106-1–262106-3 (2007). https://doi.org/10.1063/1.2753107

    ADS  Google Scholar 

  27. Ra, H.W., Choi, K.S., Ok, C.W., Jo, S.Y., Bai, K.H., Im, Y.H.: Ion bombardment effects on ZnO nanowires during plasma treatment. Appl. Phys. 93, 033112-1–033112-3 (2008). https://doi.org/10.1063/1.2965109

    ADS  Google Scholar 

  28. Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S.K., Grace, A.N., Bhatnagar, A.: Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137 (2016). https://doi.org/10.1016/j.cej.2016.08.053

    Article  Google Scholar 

  29. Savastenko, N.A., Filatova, I.I., Lyushkevich, V.A., Chubrik, N.I., Gabdullin, M.T., Ramazanov, T.S., Abdullin, H.A., Kalkozova, V.A.: Enhancement of ZnO-based photocatalyst activity by RF discharge-plasma treatment. J. Appl. Spectrosc. 83, 757–763 (2016). https://doi.org/10.1007/s10812-016-0359-1

    ADS  Article  Google Scholar 

  30. Schmidt-Mende, L., MacManus-Driscoll, J.L.: ZnO—nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007). https://doi.org/10.1016/S1369-7021(07)70078-0

    Article  Google Scholar 

  31. Sharma, A., Singh, B.P., Dhar, S., Gondorf, A., Spasova, M.: Effect of surface groups on the luminescence property of ZnO nanoparticles synthesized by sol–gel route. Surf. Sci. 606, L13–L17 (2012). https://doi.org/10.1016/j.susc.2011.09.006

    ADS  Article  Google Scholar 

  32. Simonsen, M.E., Li, Z., Søgaard, E.G.: Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film. Appl. Surf. Sci. 255, 8054–8062 (2009). https://doi.org/10.1016/j.apsusc.2009.05.013

    ADS  Article  Google Scholar 

  33. Sulyok, A., Menyhard, M., Malherbe, J.B.: Stability of ZnO {0 0 0 1} against low energy ion bombardment. Surf. Sci. 601, 1857–1861 (2007). https://doi.org/10.1016/j.susc.2007.02.011

    ADS  Article  Google Scholar 

  34. Sun, R., Nakajima, A., Fujishima, A., Watanabe, T., Hashimoto, K.: Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. 105, 1984–1990 (2001). https://doi.org/10.1021/jp002525j

    Article  Google Scholar 

  35. Wang, C.-C., Lee, C.-K., Lyu, M.-D., Juang, L.-C.: Photocatalytic degradation of CI Basic Violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes Pigments 76, 817–824 (2008). https://doi.org/10.1016/j.dyepig.2007.02.004

    Article  Google Scholar 

  36. Willander, M., Nur, O., Sadaf, J.R., Qadir, M.I., Zaman, S., Zainelabdin, A., Bano, N., Hussain, I.: Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643–2667 (2010). https://doi.org/10.3390/ma3042643

    ADS  Article  Google Scholar 

  37. Yadav, R.S., Pandey, A.C.: Small angle X-ray scattering and photoluminescence study of ZnO nanoparticles synthesized by hydrothermal process. J. Exp. Nanosci. 2, 177–182 (2007). https://doi.org/10.1080/17458080701474242

    Article  Google Scholar 

  38. Yamada, T., Kuroda, Y., Fukuoka, A., Ichikawa, M., Tanaka, K.J.: Reactivity of surface hydroxyl groups with metal complex compounds. J. Electron. Spectrosc. 54, 845–854 (1990). https://doi.org/10.1016/0368-2048(90)80277-H

    Article  Google Scholar 

  39. Zha, R., Nadimicherla, R., Guo, X.J.: Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. Mater. Chem. A 3, 6565–6574 (2015). https://doi.org/10.1039/C5TA00764J

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Education and Science of Ukraine.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. I. Turko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toporovska, L.R., Hryzak, A.M., Turko, B.I. et al. Photocatalytic properties of zinc oxide nanorods grown by different methods. Opt Quant Electron 49, 408 (2017). https://doi.org/10.1007/s11082-017-1254-6

Download citation

Keywords

  • ZnO nanorods
  • Photoluminescence
  • Photocatalytic properties
  • Photodegradation
  • Water contaminant