Skip to main content
Log in

Small and large signal analysis using circuit model of InGaAs/InP based uni-travel carrier photodiode

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An equivalent circuit model of uni-traveling carrier photodiode (UTC-PD) is developed from integral carrier density rate equation and few important properties of the device such as the electrical and optical characteristics are evaluated by employing advanced device physics. Circuit model incorporates chip and package parasitic of the device quite simply to provide practical behaviour of UTC-PD. We have developed small signal ac circuit model which is useful for the analysis of low power modulation characteristics of the device and dc circuit model which is advantageous to find wavelength dependent responsivity fairly accurately. At high optical input power the device bandwidth is found to be increased through enhancement of self-induced field in the absorption region and high output power can be derived from the device when absorption width is large. Such condition calls for large signal analysis. We have developed large signal circuit model by combining few mathematical transformations with small signal circuit model with different circuit element values. Our large signal model is unique that the same circuit can be used for both small and large signal analysis. With large signal model the optical power induced bandwidth improvement and output photocurrent saturation are explained. Large signal model is validated through linearity and IP3 analysis which found close agreement with the measured results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Adachi, S.: Properties of Semiconductor Alloys Group-IV, III-V and II-VI Semiconductors, pp. 378–379. Wiley, Chichester (2009)

    Google Scholar 

  • Barman, A.D., Sengupta, I., Basu, P.K.: A simple spice model for traveling wave semiconductor laser amplifier. Microwav. Opt. Technol. Lett. 49(7), 1558–1561 (2007)

    Article  Google Scholar 

  • Beling, A., Pan, H., Chen, H., Campbell, J.C.: Linearity of modified uni-traveling carrier photodiodes. J. Lightwave Technol. 26(15), 2373–2378 (2008)

    Article  ADS  Google Scholar 

  • Biswas, A., Basu, P.K.: Equivalent circuit models of quantum cascade lasers for SPICE simulation of steady state and dynamic responses. J. Opt. A Pure Appl. Opt. 9, 26–32 (2007)

    Article  ADS  Google Scholar 

  • Chtioui, M., Enard, A., Carpentier, D., Bernard, S., Rousseau, B., Lelarge, F., Pommereau, F., Achouche, M.: High-power high-linearity uni-traveling-carrier photodiodes for analog photonic links. IEEE Photonics Technol. Lett. 20(3), 202–204 (2008)

    Article  ADS  Google Scholar 

  • Chtioui, M., Carpentier, D., Bernard, S., Rousseau, B., Lelarge, F., Pommereau, F., Jany, C., Enard, A., Achouche, M.: Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed and high saturation power. IEEE Photonics Technol. Lett. 21(7), 429–431 (2009)

    Article  ADS  Google Scholar 

  • Chtioui, M., Lelarge, F., Enard, A., Pommereau, F., Carpentier, D., Marceaux, A., Dijk, F.V., Achouche, M.: High responsivity and high power UTC and MUTC GaInAs-InP photodiodes. IEEE Photonics Technol. Lett. 24(4), 318–320 (2012)

    Article  ADS  Google Scholar 

  • Coleman, P.D., Eden, R.C., Weaver, J.N.: Mixing and detection of coherent light in a bulk photoconductor. IEEE Trans. Electron Devices 11, 488–497 (1964)

    Article  ADS  Google Scholar 

  • Connelly, M.J.: Semiconductor Optical Amplifiers, pp. 45–71. Kluwer Academic, Boston (2002)

    Google Scholar 

  • Fawcett, W., Herbert, D.C.: High-field transport in gallium arsenide and indium phosphide. J. Phys. C Solid State Phys. 7, 1641–1654 (1974)

    Article  ADS  Google Scholar 

  • Guru, V., Jogi, J., Gupta, M., Vyas, H.P., Gupta, R.S.: An improved intrinsic small signal equivalent circuit model of delta-doped AlGaAs/InGaAs/GaAs HEMT for microwave frequency applications. Microwav. Opt. Technol. Lett. 37(5), 376–379 (2003)

    Article  Google Scholar 

  • Ishibashi, T., Furuta, T., Fushimi, H., Ito, H.: Photoresponse characteristicsof uni-traveling-carrier photodiodes. In: Proceedings of SPIE, Physics and Simulation of Optoelectronic Devices IX, San Jose, vol. 4283, pp. 469–479 (2001)

  • Ishibashi, T., Furuta, T., Fushimi, H., Kodama, S., Ito, H., Nagatsuma, T., Shimizu, N., Miyamoto, Y.: InP/InGaAs uni-traveling-carrier photodiodes. IEICE Trans. Electron. E83-C(6), 938–949 (2000)

    Google Scholar 

  • Ishibashi, T., Muramoto, Y., Yoshimatsu, T., Ito, H.: Unitraveling-carrier photodiodes for terahertz applications. IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014)

    Article  Google Scholar 

  • Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T.: High-speed and high-output InP–InGaAs uni-traveling carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004)

    Article  Google Scholar 

  • Ito, H., Yoshimatsu, T., Yamamoto, H., Ishibashi, T.: Widely frequency tunable terahertz-wave emitter integrating uni-traveling-carrier photodiode and extended bowtie antenna. Appl. Phys. Express 6, 1–3 (2013)

    Google Scholar 

  • Jianjun, G., Baoxin, G., Chunguang, L.: A pin pd microwave equivalent circuit model for optical receiver design. Microwav. Opt. Technol. Lett. 38(2), 102–104 (2003)

    Article  Google Scholar 

  • Khanra, S., Barman, A.D.: Photoresponse characteristics from computationally efficient dynamic model of uni-traveling carrier photodiode. Opt. Quantum Electron. 48, 1–11 (2015)

    Google Scholar 

  • Kuo, F.-M., Hsu, T.-C., shi, J.-W.,: Strong bandwidth-enhancement effect in high-speed GaAs/AlGaAs based uni-traveling carrier photodiode under small photocurrent and zero-bias operation. In: Proceedings of LEOS Annual Meeting TuB3, Belec-Antalya, pp. 141–142 (2009)

  • Natrella, M., Liu, C.-P., Graham, C., Dijk, F.V., Liu, H., Renaud, C.C., Seeds, A.J.: Accurate equivalent circuit model for millimetre-wave UTC photodiodes. Opt. Express 24(5), 4698–4713 (2016)

    Article  ADS  Google Scholar 

  • Ohlen, P., Skubic, B., Rostami, A., Fiorani, M., Monti, P., Ghebretensae, Z., Martensson, J., Wang, K., Wosinska, L.: Data plane and control architectures for 5G transport networks. J. Lightwave Technol. 34(6), 1501–1508 (2016)

    Article  ADS  Google Scholar 

  • Ohno, T., Fukushima, S., Doi, Y., Muramoto, Y., Matsuoka, Y.: Application of uni-traveling-carrier waveguide photodiodes in base stations of a millimeter-wave fiber-radio system, MWP’99 Digest, International Topical Meeting on. Microwave Photonics, pp. 253–265 (1999)

  • Piels, M., Bowers, J.E.: 40 GHz Si/Ge uni-traveling carrier waveguide photodiode. J. Lightwave Technol. 32(20), 3502–3508 (2014)

    Article  ADS  Google Scholar 

  • Rees, H.D., Gray, K.W.: Indium phosphide: a semiconductor for microwave devices. Solid State Electron Devices 1(1), 1–8 (1976)

    Article  ADS  Google Scholar 

  • Rouvalis, E., Renaud, C.C., Moodie, D.G., Robertson, M.J.: Seeds AJ,: Continuous wave terahertz generation from ultra-fast InP-based photodiodes. IEEE Trans. Microwav. Theory Tech. 60(3), 509–517 (2012)

    Article  ADS  Google Scholar 

  • Shimizu, N., Watanabe, N., Furuta, T., Ishibashi, T.: Improved response of uni-traveling-carrier photodiode by carrier injection. Jpn. J. Appl. Phys. 37(1), 1424–1426 (1998)

    Article  ADS  Google Scholar 

  • Shimizu, N., Miyamoto, Y., Hirano, A., Sato, K., Ishibashi, T.: RF saturation mechanism of InP/lnGaAs unitravelling-carrier photodiode. Electron. Lett. 36(8), 750–751 (2000)

    Article  Google Scholar 

  • Song, H.-J., Shimizu, N., Furuta, T., Suizu, K., Hiroshi, I., Nagatsuma, T.: Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications. J. Lightwave Technol. 26(15), 2521–2531 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is undertaken as part of Information Technology Research Academy (ITRA), Media Lab Asia project entitled “Mobile Broadband Service Support over Cognitive Radio Networks”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senjuti Khanra.

Appendix 1

Appendix 1

$$\tiny Z_{r} = \frac{\begin{aligned} \left[ {\left\{ {R + R_{S} + \frac{1}{g} + R_{P} - \omega^{2} \left( {CRL_{P} + C_{S} RL_{P} + C_{S} (R_{S} + \frac{1}{g})L_{P} + CC_{S} R(R_{S} + \frac{1}{g})R_{P} + CC_{P} R(R_{S} + \frac{1}{g})R_{P} + C_{P} R_{P} L_{P} } \right) + \omega^{4} CC_{S} C_{P} R(R_{S} + \frac{1}{g})R_{P} L_{P} } \right\}} \right] - \left\{ {1 - \omega^{2} \left( {CC_{S} R(R_{S} + \frac{1}{g}) + CC_{P} R(R_{S} + \frac{1}{g}) + C_{P} L_{P} } \right) + \omega^{4} CC_{S} C_{P} R(R_{S} + \frac{1}{g})L_{P} } \right\} \hfill \\ \left[ {\omega^{2} \left\{ {\begin{array}{*{20}c} {L_{P} + CR\left( {R_{S} + \frac{1}{g}} \right) - \omega^{2} CC_{S} R\left( {R_{S} + \frac{1}{g}} \right)L_{P} + C_{P} RR_{P} + C_{P} \left( {R_{S} + \frac{1}{g}} \right)R_{P} - \omega^{2} C_{P} R_{P} \left( {CRL_{P} + C_{S} RL_{P} + C_{S} \left( {R_{S} + \frac{1}{g}} \right)L_{P} } \right)} \\ \begin{aligned} + CRR_{P} + C_{S} RR_{P} + C_{S} \left( {R_{S} + \frac{1}{g}} \right)R_{P} \hfill \\ .\left\{ {C_{P} R + C_{P} R_{P} + CR + C_{S} R + C_{S} \left( {R_{S} + \frac{1}{g}} \right) - \omega^{2} C_{P} \left( {CRL_{P} + C_{S} RL_{P} + C_{S} \left( {R_{S} + \frac{1}{g}} \right)L_{P} } \right)} \right\} \hfill \\ \end{aligned} \\ \end{array} } \right\}} \right] \hfill \\ \end{aligned} }{{\left[ \begin{aligned} \left\{ {1 - \omega^{2} \left( {CC_{S} R\left( {R_{S} + \frac{1}{g}} \right) + CC_{P} R\left( {R_{S} + \frac{1}{g}} \right) + C_{P} L_{P} } \right) + \omega^{4} CC_{S} C_{P} R\left( {R_{S} + \frac{1}{g}} \right)L_{P} } \right\}^{2} \hfill \\ + \omega^{2} \left\{ {C_{P} R + C_{P} R_{P} + CR + C_{S} R + C_{S} \left( {R_{S} + \frac{1}{g}} \right) - \omega^{2} C_{P} \left( {CRL_{P} + C_{S} RL_{P} + C_{S} \left( {R_{S} + \frac{1}{g}} \right)L_{P} } \right)} \right\}^{2} \hfill \\ \end{aligned} \right]}}$$

\(Z_{i } = \frac{\begin{aligned} \left[ {\begin{array}{*{20}c} {\left\{ {R + R_{S} + 1/g + R_{P} - \omega^{2} \left( {CRL_{P} + C_{S} RL_{P} + C_{S} \left( {R_{S} + \frac{1}{g}} \right)L_{P} + CC_{S} R\left( {R_{S} + \frac{1}{g}} \right)R_{P} + CC_{P} R\left( {R_{S} + \frac{1}{g}} \right)R_{P} + C_{P} R_{P} L_{P} } \right) + \omega^{4} CC_{S} C_{P} R\left( {R_{S} + \frac{1}{g}} \right)R_{P} L_{P} } \right\}} \\ {.\left\{ {C_{P} R + C_{P} R_{P} + CR + C_{S} R + C_{S} \left( {R_{S} + \frac{1}{g}} \right) - \omega^{2} C_{P} \left( {CRL_{P} + C_{S} RL_{P} + C_{S} \left( {R_{S} + \frac{1}{g}} \right)L_{P} } \right)} \right\}} \\ \end{array} } \right] - \hfill \\ \left[ {\begin{array}{*{20}c} {\omega^{2} \left\{ {\begin{array}{*{20}c} {L_{P} + CR\left( {R_{S} + \frac{1}{g}} \right) - \omega^{2} CC_{S} R\left( {R_{S} + \frac{1}{g}} \right)L_{P} + C_{P} RL_{P} + C_{P} \left( {R_{S} + \frac{1}{g}} \right)L_{P} - \omega^{2} C_{P} R_{P} \left( {CRL_{P} + C_{S} RL_{P} + C_{S} \left( {R_{S} + \frac{1}{g}} \right)L_{P} } \right)} \\ { + CRR_{P} + C_{S} RR_{P} + C_{S} \left( {R_{S} + \frac{1}{g}} \right)R_{P} } \\ \end{array} } \right\}} \\ {.\left\{ {1 - \omega^{2} \left( {CC_{S} R\left( {R_{S} + \frac{1}{g}} \right) + CC_{P} R\left( {R_{S} + \frac{1}{g}} \right) + C_{P} L_{P} } \right) + \omega^{4} CC_{S} C_{P} R\left( {R_{S} + \frac{1}{g}} \right)L_{P} } \right\}} \\ \end{array} } \right] \hfill \\ \end{aligned} }{{\left[ {\begin{array}{*{20}c} {\left\{ {1 - \omega^{2} \left( {CC_{S} R\left( {R_{S} + \frac{1}{g}} \right) + CC_{P} R\left( {R_{S} + \frac{1}{g}} \right) + C_{P} L_{P} } \right) + \omega^{4} CC_{S} C_{P} R\left( {R_{S} + \frac{1}{g}} \right)L_{P} } \right\}^{2} } \\ { + \omega^{2} \left\{ {C_{P} R + C_{P} R_{P} + CR + C_{S} R + C_{S} \left( {R_{S} + \frac{1}{g}} \right) - \omega^{2} C_{P} \left( {CRL_{P} + C_{S} RL_{P} + C_{S} \left( {R_{S} + \frac{1}{g}} \right)L_{P} } \right)} \right\}^{2} } \\ \end{array} } \right]}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanra, S., Sengupta, I. & Das Barman, A. Small and large signal analysis using circuit model of InGaAs/InP based uni-travel carrier photodiode. Opt Quant Electron 49, 374 (2017). https://doi.org/10.1007/s11082-017-1205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1205-2

Keywords

Navigation