Skip to main content
Log in

Small-sized body influence on the quality factor increasing of quasioptical open resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The results of an experimental study of electromagnetic waves scattering are described for small electric size bodies in the long-focus open resonator, whose quasioptical approximations are satisfied. It is shown that the effect of the Q factor increase is characteristic for such resonators, and for scatterers, not only spherical, but also of other geometrical forms whose sizes are small in comparison with a wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Born, M., Wolf, E.: Principles of Optics, 4th edn. Pergamon Press, Oxford, 489 p (1970)

    Google Scholar 

  • Braakman, R., Blake, G.A.: Principles and promise of Fabry–Perot resonators at terahertz frequencies. J. Appl. Phys. 109, 063102 (2011)

    Article  ADS  Google Scholar 

  • Chernov, A.I., Predein, A.Y., Danilyuk, A.F., Kuznetsov, V.L., Larina, T.V., Obraztsova, E.D.: Optical properties of silica aerogels with embedded multiwalled carbon nanotubes. Phys. Status Solidi (B) Basic Res. 253(12), 2440–2445 (2016)

    Article  ADS  Google Scholar 

  • Clarke, R.N., Rosenberg, C.B.: Fabry–Perot and open resonators at microwave and millimetre wave frequencies, 2–300 GHz. J. Phys. E Sci. Instrum., 15, 9–24 (1982)

    Article  ADS  Google Scholar 

  • Costanzo, S., Di Massa, G., Moreno, H.O.: Microwave open resonator techniques—part II: applications. In: Costanzo, S. (ed.) Microwave Materials Characterization, 170 p. InTech (2012)

  • Cullen, A.L., Kumar, A.: The absolute determination of extinction cross-sections by the use of an open resonator. Proc. R. Soc. Lond. A 315, 217–230 (1970)

    Article  ADS  Google Scholar 

  • Dorofeev, I.O., Dunaevskii, G.E.: A two-layered thin cylinder in an open microwave resonator. Russ. Phys. J. 56(1), 49–54 (2013)

    Article  Google Scholar 

  • Dorofeev, I.O., Dunaevskii, G.E.: Resonance characteristics for microwire pieces as elements of composite materials. Russ. Phys. J. 59(12), 2080–2086 (2017)

    Article  Google Scholar 

  • Kuznetsov, V.L., Suslyaev, V.I., Dorofeev, I.O., Kazakova, M.A., Moseenkov, S.I., Smirnova, T.E., Krasnikov, D.V.: Investigation of electromagnetic properties of MWCNT aerogels produced via catalytic ethylene decomposition. Phys. Status Solidi B 252(11), 2519–2523 (2015)

    Article  ADS  Google Scholar 

  • Macutkevic, J., Banys, J., Kuznetsov, V., Moseenkov, S.: Shenderova, O: Broadband dielectric properties of onion-like carbon/polyurethane composites. Phys. Status Solidi (A) Appl. Mater. Sci. 210(12), 2683–2688 (2013)

    Article  ADS  Google Scholar 

  • Melezhik, P.N., Miroshnichenko, V.S., Senkevich, Y.B.: Open resonators with conducting cylindrical inserts. 1. Two-dimensional model. Radiophys. Quantum Electron. 48(7), 529–536 (2005a)

    Article  ADS  Google Scholar 

  • Melezhik, P.N., Miroshnichenko, V.S., Senkevich, Y.B.: Open resonators with conducting cylindrical inserts. 2. Resonators with finite-length mirrors. Radiophys. Quantum Electron. 48(8), 607–613 (2005b)

    Article  ADS  Google Scholar 

  • Miroshnichenko, V.S., Melezhik, P.N., Senkevich, Y.B.: Investigation of the resonance field structure in an open resonator by the probe method: theory and experiment. Russ. J. Appl. Phys. 51(8), 1076–1083 (2006)

    Google Scholar 

  • Noguez, C.: Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C 111, 3806–3819 (2007)

    Article  Google Scholar 

  • Suslyaev, V., Korovin, E., Zhuravlev, V.: Effective magnetic permeability of a composite material based on nanoscale hexaferrite particles. Int. J. Nanotechnol. 12(3/4), 192–199 (2015)

    Article  ADS  Google Scholar 

  • Suzuki, H., Kamijo, T.: Millimeter-wave measurement of complex permittivity by perturbation method using open resonator. IEEE Trans. Instrum. Meas. 57(12), 2868–2873 (2009)

    Article  Google Scholar 

  • Svishchov, Y.V.: Resonant increase of magnetic eigenmode quality of an open resonator with a spherical metal insertion. Radiophys. Quantum Electron. 53(5–6), 363–370 (2010)

    Article  ADS  Google Scholar 

  • Svishchov, Y.V.: Resonance increase of the q-factor of magnetic-type Eigen oscillations in an open resonator with ball-shaped dielectric insertion. Telecomm. Radio Eng. 73(11C), 943–953 (2014)

    Article  Google Scholar 

  • Valitov, R.A., Dyubko, S.F., Kamyshan, V.V., Sheiko, V.P.: Method for measuring the field distribution in an open reason. Sov. Phys. JETP. 20(4), 791–1077 (1965)

    Google Scholar 

  • Weinstein, L.A.: Open Resonators and Open Wavequides. Golem Press, Boulder, 469 p (1969)

    Google Scholar 

  • Yang, B.B., Katz, S.L., Willis, K.J., et al.: A High-Q terahertz resonator for the measurement of electronic properties of conductors and low-loss dielectrics. IEEE Trans. Terahertz Sci. Technol. 2(4), 449–459 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The study is performed with assistance of the Program of increase in competitiveness of Tomsk State University, the Project No. 8.2.08.2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Minin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeev, I.O., Dunaevskii, G.E., Suslyaev, V.I. et al. Small-sized body influence on the quality factor increasing of quasioptical open resonator. Opt Quant Electron 49, 355 (2017). https://doi.org/10.1007/s11082-017-1201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1201-6

Keywords

Navigation