Skip to main content

Novel hyperbolic behaviors to some important models arising in quantum science

Abstract

In this study, with the help of Wolfram Mathematica 9 software, the powerful sine-Gordon expansion method is used in constructing new hyperbolic function solutions to the two well known nonlinear differential equations that arise in the field of nonlinear sciences, namely; the modified Zakharov–Kuznetsov and the (2+1)-dimensional cubic Klein–Gordon equations. We also plot the two- and three-dimensional graphics of all the obtained solutions in this paper by utilizing the same program in the Wolfram Mathematica 9 software.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Abdelkawey, M.A., Bhrawy, A.H., Zerrad, E., Biswas, A.: Application of tanh method to complex coupled nonlinear evolution equations. Acta Phys. Pol. A 129(3), 278–283 (2016)

    Article  Google Scholar 

  2. Abdou, M.A.: The extended tanh method and its applications for solving nonlinear physical models. Appl. Math. Comput. 190(1), 988–996 (2007)

    MATH  MathSciNet  Google Scholar 

  3. Alquran, M., Katatbeh, Q., Al-Shrida, B.: Applications of first integral method to some complex nonlinear evolution systems. Appl. Math. Inf. Sci. 9(2), 825–831 (2015)

    MathSciNet  Google Scholar 

  4. Baskonus, H.M.: New acoustic wave behaviors to the Davey–Stewartson equation with power nonlinearity arising in fluid dynamics. Nonlinear Dyn. 86(1), 177–183 (2016)

    Article  MathSciNet  Google Scholar 

  5. Baskonus, H.M., Bulut, H.: New hyperbolic function solutions for some nonlinear partial differential equation arising in mathematical physics. Entropy 17, 4255–4270 (2015)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bulut, H., Sulaiman, T.A., Baskonus, H.M.: New solitary and optical wave structures to the Korteweg–de Vries equation with dual-power law nonlinearity. Opt. Quantum Electron. 48(564), 1–14 (2016)

    Google Scholar 

  7. Eslami, M., Vajargah, B.F., Mirzazadeh, M.: Exact solutions of modified Zakharov–Kuznetsov equation by the homogeneous balance method. Ain Shams Eng. J. 5, 221–225 (2014)

    Article  Google Scholar 

  8. He, J.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int. J. Non Linear Mech. 34(4), 699–708 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. He, J., Wu, X.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700–708 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Islam, M.S., Khan, K., Arnous, A.H.: Generalized Kudryashov method for solving some (3+1)-dimensional nonlinear evolution equations. New Trends Math. Sci. 3(3), 46–57 (2015)

    MathSciNet  Google Scholar 

  11. Kadkhoda, N., Jafari, H.: Kudryashov method for exact solutions of isothermal magnetostatic atmospheres. Iran. J. Numer. Anal. Optim. 6(1), 43–52 (2016)

    MATH  Google Scholar 

  12. Kaplan, M., Bekir, A., Akbulut, A.: A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics. Nonlinear Dyn. 85(4), 2843–2850 (2016)

    Article  MathSciNet  Google Scholar 

  13. Karimi, M.: The tanh method for solutions of the nonlinear modified Korteweg de Vries equation. Math. Sci. J. 9(1), 47–54 (2013)

    MathSciNet  Google Scholar 

  14. Khalfallah, M.: New exact traveling wave solutions of the (2+1)-dimensional Zakharov–Kuznetsov (ZK) equation. An. Stiint. Univ. Ovidius Constanta 15(2), 35–43 (2007)

    MATH  MathSciNet  Google Scholar 

  15. Khan, K., Akbar, M.A.: Exact solutions of the (2+1)-dimensional cubic Klein–Gordon equation and the (3+1)-dimensional Zakharov–Kuznetsov equation using the modified simple equation method. J. Assoc. Arab Univ. Basic Appl. Sci. 15, 74–81 (2014)

    Google Scholar 

  16. Lin, X., Tang, S., Huang, W.: The extended tanh method for compactons and solitons solutions for the ch(n,2n \(-\) 1,2n,\(-\)n) equations. J. Inf. Secur. 3, 185–188 (2012)

    ADS  Google Scholar 

  17. Malfliet, W.: The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations. J. Comput. Appl. Math. 164, 529–541 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Manafian, J., Shahabi, R., Norbakhsh, N., Zamanpour, I., Jalali, J.: Application of the exp-function method for the KP-BBM equation and its generalized form. Open Sci. J. Mod. Phys. 1(3), 17–23 (2014)

    Google Scholar 

  19. Moradi, E., Varasteh, H., Abdollahzadeh, A., Malekshah, M.M.: The exp-function method for solving two dimensional sine-Bratu type equations. Appl. Math. 5, 1212–1217 (2015)

    Article  Google Scholar 

  20. Naher, H., Abdullah, F.A.: The improved \((G^{^{\prime }}/G)\)-expansion method for the (2+1)-dimensional modified Zakharov–Kuznetsov equation. J. Appl. Math. 2012, 438928 (2012). doi:10.1155/2012/438928

  21. Navickas, Z., Telksnys, T., Ragulskis, M.: Comments on “The exp-function method and generalized solitary solutions”. Comput. Math. Appl. 69, 798–803 (2015)

    Article  MathSciNet  Google Scholar 

  22. Pandir, Y., Gurefe, Y., Misirli, E.: A new approach to Kudryashov’s method for solving some nonlinear physical models. Int. J. Phys. Sci. 7(21), 2860–2866 (2012)

    Google Scholar 

  23. Rao, D.V.G.: A study of the variational iteration method for solving three species food web model. Int. J. Math. Anal. 6(16), 753–759 (2012)

    MATH  MathSciNet  Google Scholar 

  24. Ryabov, P.N., Sinelsshchikov, D.I., Kochanov, M.B.: Application of Kudryashov method for finding exact solutions of the higher order nonlinear evolution equations. Appl. Math. Comput. 218(7), 3965–3972 (2011)

    MATH  MathSciNet  Google Scholar 

  25. Seadawy, A.R.: Three-dimensional nonlinear modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized plasma. Ain Shams Eng. J. 71(1), 201–212 (2016)

    MathSciNet  Google Scholar 

  26. Sharma, P., Kushel, O.Y.: The first integral method for Huxley equation. Int. J. Nonlinear Sci. 10(1), 46–52 (2010)

    MATH  MathSciNet  Google Scholar 

  27. Taghizadeh, N., Mirzazadeh, M., Paghaleh, A.S.: The first integral method to nonlinear partial differential equations. Appl. Appl. Math. Int. J. 7(1), 117–132 (2012)

    MATH  MathSciNet  Google Scholar 

  28. Taghizadeh, N., Mirzazadeh, M., Mahmoodirad, A.: Application of Kudryashov method for higher-order nonlinear Schrodinger equation. Indian J. Phys. 87(8), 781–785 (2013)

    Article  ADS  Google Scholar 

  29. Tascan, F., Bekir, A., Koparan, M.: Travelling wave solutions of nonlinear evolution equations by using the first integral method. Commun. Nonlinear Sci. Numer. Simulat. 14, 1810–1815 (2009)

    Article  ADS  Google Scholar 

  30. Wang, Q., Fu, F.: Variational iteration method for solving differential equations with piecewise constant arguments. I J Eng. Manuf. 2, 36–43 (2012)

    Google Scholar 

  31. Wazwaz, A.M.: The tanh and the sine–cosine methods for the complex modified KdV and the generalized KdV equations. Comput. Math. Appl. 49, 1101–1112 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wazwaz, A.M.: The variational iteration method: a reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math. Appl. 54, 926–932 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wazwaz, A.M.: The extended tanh method for the Zakharov–Kuznetsov (ZK) equation, the modified ZK equation and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13(6), 1039–1047 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Weisstein, E.W.: Concise Encyclopedia of Mathematics, 2nd edn. CRC Press, New York (2002)

    MATH  Google Scholar 

  35. Yan, C.: A simple transformation for nonlinear waves. Phys. Lett. A 22(4), 77–84 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Yan, Z., Zhang, H.: New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics. Phys. Lett. A 252, 291–296 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Yusufoglu, E.: The variational iteration method for studying the Klein–Gordon equation. Appl. Math. Lett. 21, 669–674 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Yusufoglu, E., Bekir, A.: On the extended tanh method applications of nonlinear equations. Int. J. Nonlinear Sci. 4(1), 10–16 (2007)

    MathSciNet  Google Scholar 

  39. Zakharov, V.E., Kuznetsov, E.A.: Three-dimensional solitons. Zh. Eksp. Teor. Fiz. 66, 594–597 (1974)

    ADS  Google Scholar 

  40. Zayed, E.M.E., Abdelrahman, H.M.: The extended tanh-method for finding traveling wave solutions of nonlinear evolution equations. Appl. Math. E Notes 10, 235–245 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hasan Bulut.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bulut, H., Sulaiman, T.A., Baskonus, H.M. et al. Novel hyperbolic behaviors to some important models arising in quantum science. Opt Quant Electron 49, 349 (2017). https://doi.org/10.1007/s11082-017-1181-6

Download citation

Keywords

  • The sine-Gordon expansion method
  • Modified Zakharov–Kuznetsov equation
  • (2+1)-Dimensional cubic
  • Hyperbolic function solution