Skip to main content
Log in

Ultra-wideband radio tomographic imaging with resolution near the diffraction limit

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The experimental ultra-wideband radio tomographic imagings inside and behind dielectric barriers with resolution near the diffraction limit are described. The problem is solved by the method of radio wave tomosynthesis using the theory of spatial spectra of the received signals. The ultra-wideband pulse sensing of the air—building structure medium, developed in Tomsk State University, are described. It has been shown that for the case of sensing with ultra-wideband pulses of 0.2 ns duration, the resolution is about 2 cm. The paper also shows the possibility of accelerating scanning of the investigated space through the use of the MIMO (timed or switched) antenna array technology. As in the timed mode the distance between the receiving and transmitting antennas varies from time step to time step, the algorithm of processing the data obtained from the array is to be modified. The modification itself is a nonlinear stretching of the received UWB signal in time. The signal transformation allows preparation of data for the above algorithm to receive three-dimensional images of the tested space. The paper presents the results of the processed experimental data which confirm the efficiency of the proposed method for MIMO arrays. The resulting image resolution is about 2 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Chang, Y.-F., Chern, C.-C.: Frequency-wave number migration of ultrasonic data. J. Nondestruct. Eval. 19(1), 1–10 (2000)

    Article  Google Scholar 

  • Chang, Y.-F., Wang, C.-Y.: A 3-D image detection method of a surface opening crack in concrete using ultrasonic transducer arrays. J. Nondestruct. Eval. 16(4), 193–203 (1997)

    Article  Google Scholar 

  • Charvat, G., Kempel, L., Rothwell, E., Coleman, C., Mokole, E.: A through-dielectric ultrawideband (UWB) switched-antenna-array radar imaging system. IEEE Trans. Antennas Propag. 60(11), 5495–5500 (2012)

    Article  ADS  Google Scholar 

  • Dehmollaian, M., Sarabandi, K.: Refocusing through building walls using synthetic aperture radar. In: IEEE Antennas and Propagation Society International Symposium, AP-S, pp. 1465–1468 (2007). doi:10.1109/APS.2007.4395782

  • Dolganova, I.N., Zaytsev, K.I., Metelkina, A.A., Yakovlev, E.V., Karasik, V.E., Yurchenko, S.O.: Combined terahertz imaging system for enhanced imaging quality. Opt. Quant. Electron. 48, 325 (2016)

    Article  Google Scholar 

  • Dromigny, A., Zhu, Y.M.: Improving the dynamic range of real-time X-ray imaging systems via bayesian fusion. J. Nondestruct. Eval. 16(3), 147–160 (1997)

    Google Scholar 

  • Elahi, M.A., Glavin, M., Jones, E., O’Halloran, M.: Artifact removal algorithms for microwave imaging of the breast. Prog. Electromagn. Res. 141, 185–200 (2013)

    Article  Google Scholar 

  • Hantscher, S., Reisenzahn, A., Diskus, C.G.: Through-wall imaging with a 3-D UWB SAR algorithm. IEEE Signal Process. Lett. 15, 269–272 (2008)

    Article  ADS  Google Scholar 

  • Heimbeck, M.S., Ng, W.R., Golish, D.R., Gehm, M.E., Everitt, H.O.: Terahertz digital holographic imaging of voids with invisibly opaque dielectrics. IEEE Trans. Terahertz Sci. Technol. 5(1), 110–116 (2015)

    Article  ADS  Google Scholar 

  • Jia, Y., Kong, L.J., Yang, X.B.: A novel approach to target localization through unknown walls for through the wall radar imaging. Prog. Electromagn. Res. 119, 107–132 (2011)

    Article  Google Scholar 

  • Minin, I.V. (ed.): Microwave and Millimeter Wave Technologies Modern UWB Antennas and Equipment. IN-TECH, Rijeka (2010)

    Google Scholar 

  • Minin, I.V., Minin, O.V.: The system of microwave radiovision of three-dimensional objects in real time. In: Nguyen, C. (ed.) SPIE’s 45th Annual Meeting “Subsurface Sensing Technologies and Applications II”. Proceedings of SPIE, vol. 4129, 31 July–3 August 2000, pp. 616–619 (2000)

  • Minin, I.V., Minin, O.V.: Fundamentals of Security: Methods and Devices for the Detection of Hidden Objects and Terrorism Struggle. Novosibirsk State Technical University, Novosibirsk (2002a). (in Russian)

    Google Scholar 

  • Minin, I.V., Minin, O.V.: Method was used in millimeter-wave imaging. Laser Focus World 38(11), 9 (2002b)

    Google Scholar 

  • Minin, I.V., Minin, O.V.: Influence of the curvilinear surface of diffractive optical elements of mm-wave and THz wave to dispersion distortion correction of femtosecond pulses. In: Proceedings of the 2nd International Workshop on Ultra Wideband and Ultra Short Impulse Signals, pp. 259–261. 19–22 Sept 2004, Sevastopol, Ukraine (2004)

  • Minin, I.V., Minin, O.V.: THz quasioptics applications in security. In: Proceedings of SPIE 6212, Terahertz for Military and Security Applications IV, 621210, 19 May 2006. doi:10.1117/12.663727

  • Peabody Jr., J.E., Charvat, G.L., Goodwin, J., Tobias, M.: Through-wall imaging radar. LINCOLN Lab. J. 19(1), 62–72 (2012)

    Google Scholar 

  • Pochanin, G., Masalov, S., Pochanina, I., Capineri, L., Falorni, P., Bechtel, T.: Modern trends in development and application of the UWB radar systems. In: Proceedings of the 8th International Conference on UWB and Ultrashort Impulse Signals, 5–11 Sept., Odessa, Ukraine (2016)

  • Salin, B.M., Salin, M.B.: Methods for measuring bistatic characteristics of sound scattering by the ocean bottom and surface. Acoust. Phys. 62(5), 575–582 (2016)

    Article  ADS  Google Scholar 

  • Satarov, R.N., Kuz’menko, I.Y., Muksunov, T.R., Klokov, A.V., Balzovskii, E.V., Buyanov, Y.I., Shipilov, S.E., Yakubov, V.P.: Switched ultrawideband antenna array for radio tomography. Russ. Phys. J. 55(8), 884–889 (2013)

    Article  Google Scholar 

  • Shin, H.J., Narayanan, R.M., Rangaswamy, M.: Tomographic imaging with ultra-wideband noise radar using time-domain data. In: Proceedings of the SPIE 8714, Radar Sensor Technology XVII, 87140R, May 31 (2013)

  • Stolt, R.H.: Migration by Fourier transform. Geophysics 43(1), 23–48 (1978)

    Article  ADS  Google Scholar 

  • Sun, X., Lu, B.Y., Jin, T., Zhou, Z.M.: Wall clutter mitigation in through-the-wall MIMO radar application. J. Electromagn. Waves Appl. 26(17–18), 2256–2266 (2012)

    Article  Google Scholar 

  • Wang, H.N., Lu, B.Y., Song, Q.: Through-the-wall imaging and correction based on the estimation of wall parameters. In: Proceedings of 2011 IEEE CIE International Conference on Radar, RADAR 2011 2, pp. 1327–1330 (2011)

  • Willis, N.J., Griffiths, H.D. (eds.): Advances in Bistatic Radar, p. 486. SciTech Publishing, Raleigh (2007)

    Google Scholar 

  • Yakubov, V.P., Shipilov, S.E., Satarov, R.N.: Ultra-wideband sensing behind dielectric barriers. Russ. Phys. J. 53(9), 887–894 (2011)

    Article  Google Scholar 

  • Yakubov, V.P., Shipilov, S.E., Sukhanov, D.Y., Klokov, A.V.: Radiovolnovaja tomografija: dostizhenija i perspektivy, p. 264. Izd-vo NTL, Tomsk (2014) (in Russian)

  • Zhang, W.J., Hoorfar, A.: Two-dimensional diffractional tomographic algorithm for through-the-well radar imaging. Progress Electromagn. Res. B 31, 205–218 (2011)

    Article  Google Scholar 

  • Zhang, W.J., Hoorfar, A., Li, L.: Through the wall target localization with time reversal method. Progress Electromagn. Res. 106, 75–89 (2010)

    Article  Google Scholar 

  • Zhang, W.J., Amin, M.G., Ahmad, F., Hoorfar, A., Smith, G.E.: Ultrawideband impulse radar through-the-wall imaging with compressive sensing. Int. J. Antennas. Propag. (2012). doi:10.1155/2012/251497

    Google Scholar 

Download references

Acknowledgements

The work is done as part of the State Assignment No. 3.2068.2017/PCh of the Russian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. E. Shipilov or I. V. Minin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shipilov, S.E., Satarov, R.N., Yakubov, V.P. et al. Ultra-wideband radio tomographic imaging with resolution near the diffraction limit. Opt Quant Electron 49, 339 (2017). https://doi.org/10.1007/s11082-017-1172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1172-7

Keywords

Navigation